

Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-May-2024
Document Type: USP Monographs
DocId: GUID-94ABC0F7-15EF-41F2-A204-617D2C2722A4_5_en-US
DOI: https://doi.org/10.31003/USPNF_M10967_05_01
DOI Ref: ees1v

© 2025 USPC
Do not distribute

Fentanyl Citrate and Ropivacaine Hydrochloride Compounded Injection

DEFINITION

Fentanyl Citrate and Ropivacaine Hydrochloride Compounded Injection contains NLT 90.0% and NMT 110.0% of the labeled amount of fentanyl ($C_{22}H_{28}N_2O$) and ropivacaine hydrochloride ($C_{17}H_{26}N_2O \cdot HCl$).

Prepare Fentanyl Citrate and Ropivacaine Hydrochloride Compounded Injection containing 2 μ g/mL of fentanyl and 1 mg/mL of ropivacaine hydrochloride as follows (see [Pharmaceutical Compounding—Nonsterile Preparations \(795\)](#)).

Fentanyl (as fentanyl citrate injection ^a), equivalent to	200 μ g of fentanyl
Ropivacaine Hydrochloride (as ropivacaine hydrochloride injection ^b), equivalent to	100 mg of ropivacaine hydrochloride
Sodium Chloride for Injection (0.9%), a sufficient quantity to make	100 mL

^a Fentanyl Citrate 50- μ g/mL injection, Hospira, Lake Forest, IL.

^b Ropivacaine Hydrochloride 0.5% (5 mg/mL) injection, Fresenius Kabi, Lake Zurich, IL.

Aseptically withdraw and combine 4 mL of the *Fentanyl Citrate injection* (50 μ g/mL) (equivalent to 200 μ g of fentanyl) and 20 mL of *Ropivacaine Hydrochloride injection* (5 mg/mL) (equivalent to 100 mg of ropivacaine hydrochloride) into an appropriate sterile container. Bring the preparation to a final volume of 100 mL with *Sodium Chloride for Injection* (0.9%). Pass through a sterile filter of 0.22- μ m pore size.

[NOTE—Do not use a cellulose ester filter membrane for sterilization due to potential for adsorption.]

ASSAY

• PROCEDURE

Solution A: Add 2.72 g of dibasic potassium phosphate to 800 mL of water. Adjust with phosphoric acid to a pH of 5.8. Add 200 mL of methanol and mix well.

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Methanol (%)	Solution A (%)
0.0	20	80
3.0	20	80
28.0	50	50
28.5	55	45
34.0	55	45
34.5	20	80
40	20	80

Standard solution: 2 μ g/mL of fentanyl and 0.075 mg/mL of ropivacaine hydrochloride prepared from [USP Fentanyl Citrate RS](#) and [USP Ropivacaine Hydrochloride RS](#) in water

Ropivacaine hydrochloride sample solution: Transfer 0.75 mL of Injection into a 10-mL volumetric flask, and dilute with water to volume.

Fentanyl sample solution: 2 μ g/mL of fentanyl from Injection

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 10-cm; 2.6-μm packing L1

Column temperature: 40°

Flow rate: 0.8 mL/min

Injection volume: 20 μL

System suitability

Sample: Standard solution

[NOTE—The retention times for ropivacaine hydrochloride and fentanyl are about 14.4 and 24.6 min, respectively.]

Suitability requirements

Tailing factor: NMT 2.0 for both fentanyl and ropivacaine hydrochloride

Relative standard deviation: NMT 2.0% for both fentanyl and ropivacaine hydrochloride from replicate injections

Analysis

Samples: Standard solution, Ropivacaine hydrochloride sample solution, and Fentanyl sample solution

Calculate the percentage of the labeled amount of fentanyl ($C_{22}H_{28}N_2O$) and ropivacaine hydrochloride ($C_{17}H_{26}N_2O \cdot HCl$) in the portion of

Injection taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of fentanyl or ropivacaine hydrochloride from the relevant Sample solution

r_s = peak response of fentanyl or ropivacaine hydrochloride from the Standard solution

C_s = concentration of fentanyl or ropivacaine hydrochloride in the Standard solution (μg/mL or mg/mL, respectively)

C_u = nominal concentration of fentanyl or ropivacaine hydrochloride in the relevant Sample solution (μg/mL or mg/mL, respectively)

Acceptance criteria: 90.0%–110.0%

• ENANTIOMERIC PURITY

Mobile phase: Add 0.418 g of monobasic sodium phosphate and 0.941 g of dibasic sodium phosphate to 465 mL of water. Adjust with sodium hydroxide to a pH of 7.2 and add 35 mL of isopropanol. Mix well.

System suitability solution: Dissolve suitable quantities of [USP Ropivacaine Hydrochloride RS](#) and [USP Ropivacaine Related Compound B RS](#) in water. Dilute quantitatively, and stepwise, with water to obtain a solution containing about 75 μg/mL and 0.75 μg/mL, respectively.

Sample solution: Transfer 0.75 mL of Injection into a 10-mL volumetric flask, and dilute with water to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm

Column: 4-mm × 10-cm; packing L41

Column temperature: 25°

Flow rate: 1.0 mL/min

Injection volume: 20 μL

System suitability

Sample: System suitability solution

[NOTE—The relative retention times for ropivacaine related compound B and ropivacaine hydrochloride are about 0.75 and 1.0, respectively.]

Suitability requirement

Resolution: NLT 1.5 between ropivacaine related compound B (R-enantiomer) and ropivacaine (S-enantiomer)

Analysis

Sample: Sample solution

Calculate the percentage of ropivacaine related compound B (R-enantiomer) in the portion of Injection taken:

$$\text{Result} = (r_u/r_T) \times 100$$

r_u = peak response of ropivacaine related compound B (R-enantiomer)

r_T = sum of the peak responses of ropivacaine (S-enantiomer) and ropivacaine related compound B (R-enantiomer)

Acceptance criteria: NMT 2.0%

SPECIFIC TESTS

Change to read:

- **pH (791):** ▲4.0–6.0 ▲ (USP 1-May-2024)

- **STERILITY TESTS (71), Test for Sterility of the Product to Be Examined, Membrane Filtration:** Meets the requirements
- **BACTERIAL ENDOTOXINS TEST (85):** NMT 50.0 USP Endotoxin Units/mg of fentanyl and NMT 2.5 USP Endotoxin Units/mg of ropivacaine hydrochloride
- **PARTICULATE MATTER IN INJECTIONS (788):** Meets the requirements

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Package in a light-resistant, single-dose container. Store at controlled room temperature or in a refrigerator.
- **BEYOND-USE DATE:** In the absence of passing a sterility and endotoxin test, the beyond-use dates in *Pharmaceutical Compounding—Sterile Preparations (797)* apply. After successful completion of sterility and endotoxin testing, NMT 90 days after the date on which it was compounded when stored at controlled room temperature or in a refrigerator.
- **LABELING:** Label it to indicate that it is for use in a single patient only, and to state the *Beyond-Use Date*.
- **USP REFERENCE STANDARDS (11)**
 - [USP Fentanyl Citrate RS](#)
 - [USP Ropivacaine Hydrochloride RS](#)
 - [USP Ropivacaine Related Compound B RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
FENTANYL CITRATE AND ROPIVACAINE HYDROCHLORIDE COMPOUNDED INJECTION	Brian Serumaga Science Program Manager	CMP2020 Compounding 2020

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 48(4)

Current DocID: GUID-94ABC0F7-15EF-41F2-A204-617D2C2722A4_5_en-US

DOI: https://doi.org/10.31003/USPNF_M10967_05_01

DOI ref: [ees1v](#)