

Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-Aug-2024
Document Type: USP Monographs
DocId: GUID-F9A493F3-48A0-4AA9-96E4-798C75FE9A78_6_en-US
DOI: https://doi.org/10.31003/USPNF_M4250_06_01
DOI Ref: hlhns

© 2025 USPC
Do not distribute

Exenatide Injection

DEFINITION

Exenatide Injection is a sterile solution of exenatide acetate in a suitable diluent. It may contain suitable preservatives. It possesses, in each milliliter, an activity of NLT 90.0% and NMT 110.0% of the labeled amount of exenatide ($C_{184}H_{282}N_{50}O_{60}S$).

IDENTIFICATION

- **A. HPLC**

Diluent, Buffer solution A, Solution A, Buffer solution B, Solution B, Mobile phase, Standard solution, System suitability solution, Sample solution, Chromatographic system, and System suitability: Proceed as directed in *Product-Related Substances and Impurities*.

Identity sample solution: 0.25 mg/mL of [USP Exenatide RS](#) in *Diluent* mixed with 0.25 mg/mL of *Injection Analysis*

Samples: *Standard solution, Sample solution, and Identity sample solution*

Acceptance criteria: The retention time of the exenatide peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in *Product-Related Substances and Impurities*. In addition, the major peaks of the *Identity sample solution* coelute.

- **B.** The average mass by [Mass Spectrometry \(736\)](#) is 4186.6 ± 1.0 Da.

ASSAY

- **PROCEDURE**

Diluent: A 2-L aqueous solution containing 3.26 g of [sodium acetate trihydrate](#), 2.98 g of L-methionine, and 2.06 mL of [glacial acetic acid](#), pH 4.5. Pass through a membrane filter of 0.2- μ m pore size.

[**NOTE**—Alternative suitable diluents may also be used.]

Buffer solution: 0.13 M sodium sulfate solution

Mobile phase: *Buffer solution*, acetonitrile, and trifluoroacetic acid (1500:500:2). Pass through a membrane filter of 0.45- μ m pore size.

Standard solution: 0.25 mg/mL of [USP Exenatide RS](#) in *Diluent*

Soybean trypsin inhibitor stock solution: 1 mg/mL of soybean trypsin inhibitor in water. Prepare in duplicate.

System suitability solution: Transfer 10–50 μ L of *Soybean trypsin inhibitor stock solution* to 1 mL of the *Standard solution* and mix with a vortex mixer for at least 30 s. Determine the soybean trypsin inhibitor peak level before initiating sample analysis. The soybean trypsin inhibitor peak level should be $\geq 2.0\%$ but $\leq 5.0\%$ relative to the total peak area. If the peak level is $<2.0\%$, transfer additional *Soybean trypsin inhibitor stock solution* to the *System suitability solution*. If the peak level is $>5.0\%$, discard and prepare a new *System suitability solution*.

Sample solution: Transfer an adequate quantity of each *Injection* (0.25 mg/mL) from its container directly to an HPLC vial, without contact with any intermediate container or transfer device.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 214 nm

Column: 7.8-mm \times 30-cm; 5- μ m packing L20

Flow rate: 0.8 mL/min

Injection volume: 20 μ L

Temperatures

Autosampler: 2°–8°

Column: 25°

System suitability

Samples: *Standard solution and System suitability solution*

Suitability requirements

Resolution: NLT 1.3 between the exenatide peak and soybean trypsin inhibitor peak, *System suitability solution*

Tailing factor: NLT 0.8 and NMT 1.4, *Standard solution*

Relative standard deviation: NMT 2.0%, *Standard solution*

Analysis

Samples: *Standard solution and Sample solution*

Calculate the percentage of the labeled amount of exenatide ($C_{184}H_{282}N_{50}O_{60}S$) in the portion of *Injection* taken:

r_u = peak response from the *Sample solution* r_s = mean peak response from the *Standard solution* C_s = concentration of [USP Exenatide RS](#) in the *Standard solution* (mg/mL) C_u = nominal concentration of exenatide in the *Sample solution* (mg/mL)**Acceptance criteria:** 90.0%–110.0%**PRODUCT-RELATED SUBSTANCES AND IMPURITIES****Change to read:****• PROCEDURE****Diluent:** A 2-L aqueous solution containing 3.26 g of [sodium acetate trihydrate](#), 2.98 g of L-methionine, and 2.06 mL of [glacial acetic acid](#), pH 4.5. Pass through a membrane filter of 0.2- μ m pore size.

[NOTE—Alternative suitable diluents may also be used.]

Buffer solution A: Transfer 27.20 g of anhydrous monobasic potassium phosphate to a 2-L flask or beaker. Add approximately 1900 mL of water and mix well until dissolved. Adjust with phosphoric acid to a pH of 3.30. Transfer the buffer solution to a 2-L volumetric flask, dilute with water to volume, and mix well.**Solution A:** Transfer 1670 mL of *Buffer solution A* to a glass container, add 1673 mL of acetonitrile, and mix well. Pass through a membrane filter of 0.45- μ m pore size.**Buffer solution B:** Transfer 27.20 g of anhydrous monobasic potassium phosphate and 56.20 g of sodium perchlorate monohydrate to a 2-L flask or beaker. Add approximately 1950 mL of water, heat to 65° for 5 min, and mix well until dissolved. Adjust with phosphoric acid to a pH of 3.30. Transfer the buffer solution to a 2-L volumetric flask, dilute with water to volume, and mix well.**Solution B:** Transfer 1083 mL of *Buffer solution B* to a glass container, add 1115 mL of acetonitrile, and mix well. Pass through a membrane filter of 0.45- μ m pore size.**Mobile phase:** See [Table 1](#).**Table 1**

Time (min)	Solution A (%)	Solution B (%)
0	100	0
5.0	100	0
45.0	40	60
50.0	0	100
52.0	0	100
54.0	100	0
65.0	100	0

0.3% Hydrogen peroxide: Transfer 1 mL of 3% hydrogen peroxide to a 10-mL volumetric flask and dilute with water to volume. Stopper and mix well.**Standard solution:** 0.25 mg/mL of [USP Exenatide RS](#) in *Diluent***System suitability solution:** Transfer 5 μ L of 0.3% *Hydrogen peroxide* to 1 mL of *Standard solution* and mix well by mixing with a vortex mixer for at least 30 s. Incubate the tightly capped vial in a boiling water bath for 30 min. Cool the vial rapidly to room temperature and transfer the contents to a glass HPLC vial without any contact with an intermediate transfer device.**Sample solution:** Transfer an adequate quantity of each *Injection* (0.25 mg/mL) from its container directly to an HPLC vial, without contact with any intermediate container or transfer device.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 214 nm**Column:** 4.6-mm \times 10-cm; 3- μ m packing L52 Δ ; two columns in series Δ (ERR 1-Aug-2024)**Flow rate:** 1.2 mL/min**Injection volume:** 40 μ L

Temperatures**Autosampler:** 2°–8°**Column:** 40°**System suitability****Samples:** Standard solution and System suitability solution**Suitability requirements****Resolution:** NLT 2.0 between the exenatide peak and the peak at an approximate relative retention time of 1.09, System suitability solution**Column efficiency:** NLT 15,000 theoretical plates, Standard solution**Tailing factor:** Between 0.8 and 1.5 for the exenatide peak, Standard solution**Relative standard deviation:** NMT 2.0% for 5 replicate injections, Standard solution**Analysis****Samples:** Standard solution and Sample solution

Record the chromatograms and measure the response for each peak. Determine the corrected total peak area by excluding system peaks and peaks below 0.10% of the total peak area.

Calculate the percentage of each impurity in the portion of Injection taken by using the corrected total peak area:

$$\text{Result} = (r_i/r_T) \times 100$$

r_i = peak response of each impurity from the Sample solution

r_T = corrected total peak area

Acceptance criteria: See [Table 2](#).

Table 2

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
[3-39]-Exenatide ^a	0.32	1.00
Exenatide	1.00	—
[Asu ⁹]-exenatide	1.22	1.00
Unspecified impurities	—	1.00
Total impurities	—	10.0

^a Peptide fragment peak resulting from degradation.

SPECIFIC TESTS

- [BACTERIAL ENDOTOXINS TEST \(85\)](#): NMT 50 USP Endotoxin Units/mL
- [STERILITY TESTS \(71\), Test for Sterility of the Product to Be Examined, Membrane Filtration](#): Meets the requirements
- [PARTICULATE MATTER IN INJECTIONS \(788\)](#): Meets the requirements for small-volume injections
- [SUBVISIBLE PARTICULATE MATTER IN THERAPEUTIC PROTEIN INJECTIONS \(787\)](#): NMT 6000 counts/container $\geq 10 \mu\text{m}$, NMT 600 counts/container $\geq 25 \mu\text{m}$
- [pH \(791\)](#): 4.2–4.8
- [INJECTIONS AND IMPLANTED DRUG PRODUCTS \(1\)](#): Meets the requirements

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE:** Store at 2°–8°. Do not freeze.
- LABELING:** Meets the requirements in [Labeling \(7\)](#).
- USP REFERENCE STANDARDS (11)**
[USP Exenatide RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
EXENATIDE INJECTION	Ying Han Associate Science & Standards Liaison	BIO12020 Biologics Monographs 1 - Peptides

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 43(5)

Current DocID: GUID-F9A493F3-48A0-4AA9-96E4-798C75FE9A78_6_en-US

DOI: https://doi.org/10.31003/USPNF_M4250_06_01

DOI ref: [hlhns](#)

OFFICIAL