h2/14/25,3:32-PM/trungtamthuoc.com USP-NF Eucalyptus Oil

Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: NF Monographs
DocId: GUID-FEA84FA5-7C15-464F-85D5-F8D18C04F05D_2_en-US
DOI: https://doi.org/10.31003/USPNF_M387_02_01
DOI Ref: 5pb4g

© 2025 USPC Do not distribute

Eucalyptus Oil

CAS RN®: 8000-48-4.

DEFINITION

Eucalyptus Oil is obtained by steam distillation and rectification from the fresh leaves or the fresh terminal branchlets of various species of *Eucalyptus* rich in 1,8-cineole. The species mainly used are *Eucalyptus globulus* Labill., *Eucalyptus polybractea* R.T. Baker, and *Eucalyptus smithii* R.T. Baker. It contains NLT 70.0% and NMT 95.0% of eucalyptol (1,8-cineole, C₁₀H₁₈O).

IDENTIFICATION

Change to read:

- A. <u>Spectroscopic Identification Tests (197), Infrared Spectroscopy: 197F</u> (CN 1-May-2020)
- B. IDENTITY BY AROMA SUBSTANCE PROFILE: The retention times of the (+)- α -pinene, β -pinene, (R)-(-)- α -phellandrene, (R)-(+)-limonene, and eucalyptol peaks of the Sample solution correspond to those of the Standard solution, as obtained in the test for Content of Aroma Substances in the Assay.

ASSAY

• CONTENT OF AROMA SUBSTANCES

Standard solution A: 1.0 μL/mL of (+)- α -pinene, 0.5 μL/mL of β -pinene, 0.5 μL/mL of sabinene, 0.5 μL/mL of (R)-(-)- α -phellandrene, 1.0 μL/mL of (R)-(+)-limonene, 5 μL/mL of <u>USP Eucalyptol RS</u>, and 5 mg/mL of <u>USP Camphor RS</u> in heptane

Standard solution B: 0.01 μ L/mL of (R)-(+)-limonene in heptane Sample solution: 20 μ L/mL of Eucalyptus Oil in heptane

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: GC

Detector: Flame ionization

Column: 0.25-mm × 60-m fused-silica capillary; 0.25-µm layer of phase G16

Temperatures
Injection port: 220°
Detector: 220°
Column: See Table 1.

Table 1

Initial Temperature (°)	Temperature Ramp (°/min)	Final Temperature (°)	Hold Time at Final Temperature (min)
60	_	60	5
60	5	200	5

Carrier gas: Helium
Flow rate: 1.5 mL/min
Injection type: Split ratio, 1:50
Injection volume: 1 µL
System suitability

Sample: Standard solution A

[Note—The relative retention times are listed in <u>Table 2</u>.]

Table 2

2/14/25, 3:32-PM/trungtamthuoc com USP-NF Eucalyptus Oil

Name	Relative Retention Time
(+)-α-Pinene	0.64
β-Pinene	0.80
Sabinene	0.83
(R) - $(-)$ - α -Phellandrene	0.91
(R)-(+)-Limonene	0.98
Eucalyptol	1.00
Camphor	1.58

Suitability requirements

Resolution: NLT 1.5 between (R)-(+)-limonene and eucalyptol

Analysis

Samples: Standard solution A, Standard solution B, and Sample solution

Identify the peaks in the Sample solution based on those in Standard solution A as well as in Table 3.

Table 3

Name	Relative Retention Time
β-Мугсепе	0.86-0.90
γ-Terpinene	1.05–1.07
p-Cymene	1.12-1.13
Terpinen-4-ol	1.68
α-Terpineol	1.82

β-Myrcene elutes before (R)-(-)- α -phellandrene and after sabinene; γ -terpinene and p-cymene elute between eucalyptol and camphor; and terpinen-4-ol and α -terpineol elute after camphor.

Calculate the percentage of (+)- α -pinene [β -pinene, sabinene, (R)-(-)- α -phellandrene, (R)-(+)-limonene, or eucalyptol] in the portion of Eucalyptus Oil taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

- r_U = peak response of (+)-α-pinene [β-pinene, sabinene, (R)-(-)-α-phellandrene, (R)-(+)-limonene, or eucalyptol] from the Sample solution
- r_S = peak response of (+)-α-pinene [β-pinene, sabinene, (R)-(-)-α-phellandrene, (R)-(+)-limonene, or eucalyptol] from the Standard
- C_S = concentration of (+)- α -pinene [β -pinene, sabinene, (R)-(-)- α -phellandrene, (R)-(+)-limonene, or <u>USP Eucalyptol RS</u>] in the Standard solution (μ L/mL)
- C_{μ} = concentration of Eucalyptus Oil in the Sample solution (μ L/mL)

Calculate the percentage of camphor in the portion of Eucalyptus Oil taken:

Result =
$$(r_{ij}/r_{e}) \times [C_{e}/(C_{ij} \times D)] \times 100$$

- r_{ij} = peak response of camphor from the Sample solution
- $r_{\rm s}$ = peak response of camphor from the Standard solution
- C_s = concentration of <u>USP Camphor RS</u> in the *Standard solution* (mg/mL)

h2/14/25,3:32-PM/trungtamthuoc.com USP-NF Eucalyptus Oil

C, = concentration of Eucalyptus Oil in the Sample solution (μL/mL)

D = density of Eucalyptus Oil (mg/µL)

Calculate the percentage of β -myrcene (γ -terpinene, p-cymene, terpinen-4-ol, or α -terpineol) in the portion of Eucalyptus Oil taken:

Result =
$$(r_{11}/r_{T}) \times 100$$

 r_{ij} = peak response of β -myrcene (γ -terpinene, p-cymene, terpinen-4-ol, or α -terpineol) from the Sample solution

 r_{τ} = sum of the total peak responses, except for the peaks due to solvent, from the Sample solution

Acceptance criteria: See <u>Table 4</u>. Disregard any peak with an area less than the major peak area from *Standard solution B*, corresponding to 0.05%.

Table 4

Name	Acceptance Criteria, NMT (%)	
(+)-α-Pinene	0.2-10.0	
β-Pinene	0.05-1.5	
Sabinene	0.3	
(R) - $(-)$ - α -Phellandrene	0.05-1.5	
(R)-(+)-Limonene	2.0-15.0	
Eucalyptol	70.0-95.0	
Camphor	0.1	

Percentage of γ -terpinene: 0.1%-6.0% Percentage of ρ -cymene: 0.5%-15.0%

Total percentage of all identified aroma substances [(+)- α -pinene, β -pinene, sabinene, (R)-(-)- α -phellandrene, (R)-(+)-limonene, eucalyptol, camphor, β -myrcene, γ -terpinene, ρ -cymene, terpinen-4-ol, and α -terpineol]: NLT 98.0%

IMPURITIES

• TEST FOR ALDEHYDE

Alcoholic hydroxylamine solution: Dissolve 3.5 g of hydroxylamine hydrochloride in 95 mL of 60% alcohol (v/v) and add 0.5 mL of a 2-mg/mL solution of methyl orange in 60% alcohol (v/v) and sufficient 0.5 M potassium hydroxide in 60% alcohol (v/v) to give a pure yellow color. Dilute with 60% alcohol (v/v) to 100 mL.

Analysis: In a ground-glass-stoppered tube, 25 mm in diameter and 150 mm long, add 10 mL of Eucalyptus 0il. Then add 5 mL of toluene and 4 mL of *Alcoholic hydroxylamine solution*. Shake vigorously, and titrate immediately with 0.5 M potassium hydroxide in 60% alcohol (v/v) until the red color changes to yellow. Continue the titration with shaking; the endpoint is reached when the pure yellow color of the indicator is permanent in the lower layer after shaking vigorously for 2 min and allowing separation to take place. The reaction is complete in about 15 min.

Repeat the titration using a further 10 mL of Eucalyptus Oil and, as a reference solution for the endpoint, the titrated liquid from the first determination, to which has been added 0.5 mL of 0.5 M potassium hydroxide in 60% alcohol (v/v).

Acceptance criteria: NMT 2.0 mL of 0.5 M potassium hydroxide in 60% alcohol (v/v) is required in the second titration.

SPECIFIC TESTS

- Specific Gravity (841): 0.906-0.927, at 20°
- Refractive Index (831): 1.450-1.470, at 20°
- OPTICAL ROTATION (781): 0°-10°, at 20°

ADDITIONAL REQUIREMENTS

- Packaging and Storage: Preserve in tight containers. Do not store above 25°.
- USP REFERENCE STANDARDS (11)

USP Camphor RS
USP Eucalyptol RS

USP Eucalyptus Oil RS

www.webofpharma.com

2/14/25, 3:32 PM/trungtamthuoc com USP-NF Eucalyptus Oil

Topic/Question	Contact	Expert Committee
EUCALYPTUS OIL	Documentary Standards Support	CE2020 Complex Excipients

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 41(4)

Current DocID: GUID-FEA84FA5-7C15-464F-85D5-F8D18C04F05D_2_en-US

DOI: https://doi.org/10.31003/USPNF_M387_02_01

DOI ref: 5pb4g