

Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-8F608AED-4C24-4AEE-86F9-C5AFE63AAEB1_2_en-US
DOI: https://doi.org/10.31003/USPNF_M31290_02_01
DOI Ref: 7yt5c

© 2025 USPC
Do not distribute

Ethchlorvynol

C_7H_9ClO 144.60

1-Penten-4-yn-3-ol, 1-chloro-3-ethyl-.

1-Chloro-3-ethyl-1-penten-4-yn-3-ol CAS RN®: 113-18-8; UNII: 6EIM3851UZ.

» Ethchlorvynol contains not less than 98.0 percent and not more than 100.0 percent of *E*-ethchlorvynol (C_7H_9ClO), calculated on the anhydrous basis.

Packaging and storage—Preserve in tight, light-resistant glass or polyethylene containers, using polyethylene-lined closures.

USP REFERENCE STANDARDS (11)—

[USP Ethchlorvynol RS](#)

Identification—

Change to read:

A: ▲[Spectroscopic Identification Tests \(197\), Infrared Spectroscopy: 197F](#)▲ (CN 1-May-2020) .

B: Dissolve about 1 g in 20 mL of methanol. To 1 mL of the solution, add about 4 drops of 6 N ammonium hydroxide, mix, then add silver nitrate TS, a few drops at a time: a yellowish white precipitate is formed, and it at first redissolves, but becomes insoluble when an excess of silver nitrate TS has been added.

C: To 10 mL of the solution prepared in *Identification* test *B* add 5 mL of freshly prepared *m*-phenylenediamine hydrochloride-oxalic acid solution (prepared by dissolving 1 g of *m*-phenylenediamine hydrochloride and 1 g of oxalic acid in 35 mL of water and filtering, if necessary): a reddish orange color is produced in about 3 minutes.

REFRACTIVE INDEX (831): between 1.476 and 1.480.

Acidity—Dissolve 5.0 mL of Ethchlorvynol in 50 mL of a mixture of equal volumes of water and methanol that has been neutralized to the phenolphthalein endpoint with 0.1 N sodium hydroxide. Add 1 mL of phenolphthalein TS, and titrate with 0.10 N sodium hydroxide to a pink endpoint: not more than 1.7 mL of 0.10 N sodium hydroxide is required for neutralization.

WATER DETERMINATION, Method I (921): not more than 0.2%.

Chromatographic purity—Calculate the percentage of each peak, other than the *E*-ethchlorvynol peak, observed in the chromatogram of the Ethchlorvynol obtained as directed in the Assay taken by the same formula:

$$100r_i/r_t$$

in which r_i is the response of each secondary peak and r_t is the sum of all of the peaks observed in the chromatogram: not more than 0.2% of toluene, not more than 1.5% of *Z*-ethchlorvynol, and not more than 0.3% of any other impurity is found, and the total of all observed impurities is not more than 2.0%.

Assay—

Resolution solution—Add 2.5 μ L of toluene to 0.5 mL of [USP Ethchlorvynol RS](#), and mix.

Chromatographic system (see [Chromatography \(621\)](#))—The gas chromatograph is equipped with a thermal conductivity detector and a 1.8-m \times 4-mm glass column (pretreated with 10% dimethyldichlorosilane in toluene) packed with 10% phase G16 on 60- to 80-mesh support S1AB. The column is maintained at about 160°, and the injector and the detector are maintained at about 200°. The carrier gas is dry helium, flowing at a rate of about 30 mL per minute. Chromatograph the *Resolution solution*, and record the peak responses as directed for *Procedure*: the relative retention times for toluene, β -chlorovinylethyl ketone (if present), *Z*-ethchlorvynol, and *E*-ethchlorvynol are about 0.1, 0.2, 0.8, and 1.0, respectively; the resolution, *R*, between the *Z*- and *E*-ethchlorvynol peaks is not less than 1.0; and the relative standard deviation for replicate injections is not more than 2.0%.

Procedure— [NOTE—Use peak areas where peak responses are indicated.]

Inject about 3 μ L of Ethchlorvynol into the chromatograph, record the chromatogram, and measure the responses for all of the peaks.

Calculate the percentage of *E*-ethchlorvynol (C_7H_9ClO) in the specimen of Ethchlorvynol taken by the formula:

$$100r_e/r_t$$

in which r_e is the response of the *E*-ethchlorvynol peak obtained in the chromatogram of the Ethchlorvynol and r_t is the sum of the responses of all of the peaks observed in the chromatogram.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
ETHCHLORVYNOL	Documentary Standards Support	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. Information currently unavailable

Current DocID: GUID-8F608AED-4C24-4AEE-86F9-C5AFE63AAEB1_2_en-US

DOI: https://doi.org/10.31003/USPNF_M31290_02_01

DOI ref: [7yt5c](#)

OFFICIAL