

Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-Dec-2024
Document Type: USP Monographs
DocId: GUID-43470CC7-E626-448A-AE64-1B46E925E501_5_en-US
DOI: https://doi.org/10.31003/USPNF_M30180_05_01
DOI Ref: t49dm

© 2025 USPC
Do not distribute

Erythromycin

Change to read:

C₃₇H₆₇NO₁₃ 733.94

▲ Erythromycin A

(3R,4S,5S,6R,7R,9R,11R,12R,13S,14R)-4-[(2,6-Dideoxy-3-C-methyl-3-O-methyl- α -L-ribo-hexopyranosyl)oxy]-14-ethyl-7,12,13-trihydroxy-3,5,7,9,11,13-hexamethyl-6-[(3,4,6-trideoxy-3-dimethylamino- β -D-xylo-hexopyranosyl)oxy]oxacyclotetradecane-2,10-dione;

C₃₇H₆₇NO₁₂ 717.94

Erythromycin B

(3R,4S,5S,6R,7R,9R,11R,12R,13S,14R)-4-[(2,6-Dideoxy-3-C-methyl-3-O-methyl- α -L-ribo-hexopyranosyl)oxy]-14-ethyl-7,12-dihydroxy-3,5,7,9,11,13-hexamethyl-6-[(3,4,6-trideoxy-3-dimethylamino- β -D-xylo-hexopyranosyl)oxy]oxacyclotetradecane-2,10-dione;

12-Deoxyerythromycin CAS RN®: 527-75-3.

C₃₆H₆₅NO₁₃ 719.91

Erythromycin C

(3R,4S,5S,6R,7R,9R,11R,12R,13S,14R)-4-[(2,6-Dideoxy-3-C-methyl- α -L-ribo-hexopyranosyl)oxy]-14-ethyl-7,12,13-trihydroxy-3,5,7,9,11,13-hexamethyl-6-[(3,4,6-trideoxy-3-dimethylamino- β -D-xylo-hexopyranosyl)oxy]oxacyclotetradecane-2,10-dione;

3"-O-Demethylerythromycin CAS RN®: 1675-02-1.▲ (USP 1-Dec-2024)

Erythromycin

▲ (USP 1-Dec-2024) CAS RN®: 114-07-8; UNII: 63937KV33D.

Change to read:

DEFINITION

Erythromycin consists primarily of erythromycin A (C₃₇H₆₇NO₁₃). The sum of the percentages of erythromycin A, erythromycin B, and erythromycin C is NLT ▲93.0%▲ (USP 1-Dec-2024) and NMT ▲102.0%,▲ (USP 1-Dec-2024) calculated on the anhydrous basis.

IDENTIFICATION

- A. **SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy:** 197S

Standard solution: 50 mg/mL of [USP Erythromycin RS](#), previously dried at a pressure not exceeding 5 mm of mercury at 60° for 3 h, in chloroform

Sample solution: 50 mg/mL of Erythromycin, previously dried at a pressure not exceeding 5 mm of mercury at 60° for 3 h, in chloroform

Spectral range: 4000–2050 cm⁻¹ and 1980–400 cm⁻¹

Acceptance criteria: Meets the requirements

- B. The retention times of erythromycin A, erythromycin B, and erythromycin C in the **Sample solution** correspond to those of **Standard solution 1** and **Standard solution 2**, as obtained in the **Assay**.

ASSAY

Change to read:

- **PROCEDURE**

▲ Prepare the erythromycin solutions immediately before use.

Diluted phosphoric acid: Dilute 7 mL of [phosphoric acid](#) with [water](#) to 100 mL.

Phosphate buffer solution pH 8.0: Dissolve 11.5 g of [dibasic potassium phosphate](#) in 900 mL of [water](#). Adjust to a pH of 8.0 with *Diluted phosphoric acid* and dilute with [water](#) to 1000 mL.

Diluent: *Phosphate buffer solution pH 8.0 and methanol* (60:40)

Phosphate buffer solution pH 7.0: Dissolve 35 g of [dibasic potassium phosphate](#) in 900 mL of [water](#). Adjust to a pH of 7.0 with *Diluted phosphoric acid* and dilute with [water](#) to 1000 mL.

Solution A: *Phosphate buffer solution pH 7.0, water, and acetonitrile* (5:60:35)

Solution B: *Phosphate buffer solution pH 7.0, water, and acetonitrile* (5:45:50)

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	100	0
T_R^a	100	0
$T_R + 2$	0	100
$T_R + 15$	0	100

^a T_R = retention time of erythromycin B, determined by injecting 10 μ L of *Standard solution 2* and eluting with *Solution A*.

Standard solution 1: 4 mg/mL of [USP Erythromycin RS](#) in *Diluent*

Standard solution 2: 0.2 mg/mL of [USP Erythromycin B RS](#) and [USP Erythromycin C RS](#) in *Diluent*

Sample solution: 4 mg/mL of Erythromycin in *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm \times 25-cm; 3.5- μ m packing [L1](#)

Temperatures

Column: 65°, preheating the *Mobile phase* may be required, for instance by extending the inlet tubing in the oven to 30 cm

Sampler: 4°

Flow rate: 1.0 mL/min

Injection volume: 100 μ L

System suitability

Sample: *Standard solution 1*

Suitability requirements

Tailing factor: NMT 2.0 for erythromycin A

Relative standard deviation: NMT 1.0% for erythromycin A, 6 replicate injections

Analysis

Samples: *Standard solution 1, Standard solution 2, and Sample solution*

Calculate the percentage of erythromycin A in the portion of Erythromycin taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times P \times 100$$

r_u = peak response of erythromycin A from the *Sample solution*

r_s = peak response of erythromycin A from *Standard solution 1*

C_s = concentration of [USP Erythromycin RS](#) in *Standard solution 1* (mg/mL)

C_u = concentration of Erythromycin, calculated on the anhydrous basis, in the *Sample solution* (mg/mL)

P = percentage of erythromycin A in [USP Erythromycin RS](#)

Calculate the percentages of erythromycin B and erythromycin C in the portion of Erythromycin taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times P \times 100$$

r_u = peak response of the relevant analyte from the *Sample solution*

r_s = peak response of the relevant analyte from *Standard solution 2* C_s = concentration of the corresponding Reference Standard in *Standard solution 2* (mg/mL) C_u = concentration of Erythromycin, calculated on the anhydrous basis, in the *Sample solution* (mg/mL) P = potency of erythromycin B or erythromycin C in the corresponding Reference Standard (mg/mg)**Acceptance criteria****Sum of Erythromycin A, Erythromycin B, and Erythromycin C:** 93.0%–102.0% on the anhydrous basis**Erythromycin B:** NMT 5.0% on the anhydrous basis**Erythromycin C:** NMT 5.0% on the anhydrous basis▲ (USP 1-Dec-2024)**IMPURITIES**

- **RESIDUE ON IGNITION (281):** NMT 0.2%

Change to read:

- **LIMIT OF THIOLYTIC**

Use the *Standard solutions*, *Sample solution*, and *Blank solution* within 30 min.

Standard stock solutions 1 and 2: 0.2 mg/mL of potassium thiocyanate prepared in duplicate as follows. Transfer 100 mg of potassium thiocyanate, previously dried at 105° for 1 h and cooled, to a 50-mL volumetric flask. Add about 20 mL of methanol to each flask, swirl to dissolve, and dilute with methanol to volume. Transfer 5.0 mL of this solution to a 50-mL volumetric flask and dilute with methanol to volume.

Standard solutions 1 and 2: 0.02 mg/mL of potassium thiocyanate prepared in duplicate as follows. Transfer 5.0 mL of each of the *Standard stock solutions* to separate 50-mL low-actinic volumetric flasks, add 1.0 mL of ferric chloride TS, dilute with methanol to volume.

Sample solution: 2 mg/mL of Erythromycin prepared as follows. Transfer 100 mg of Erythromycin to a 50-mL low-actinic volumetric flask, add 20 mL of methanol, and swirl to dissolve. Add 1.0 mL of ferric chloride TS and dilute with methanol to volume.

Blank solution: Add 1.0 mL of ferric chloride TS to a 50-mL low-actinic volumetric flask. Dilute with methanol to volume.

Instrumental conditions

(See Ultraviolet-Visible Spectroscopy (857).)

Mode: UV-Vis**Analytical wavelength:** 492 nm**System suitability****Samples:** *Standard solution 1*, *Standard solution 2*, and *Blank solution*

Use the *Blank solution* to zero the instrument. Measure the absorbance of the two *Standard solutions*.

Suitability: 0.985–1.015

Calculate the suitability, S:

$$\text{Result} = (A_1/W_1) \times (W_2/A_2)$$

 A_1 = absorbance of *Standard solution 1* W_1 = weight of the potassium thiocyanate taken to prepare *Standard solution 1* (mg) W_2 = weight of the potassium thiocyanate taken to prepare *Standard solution 2* (mg) A_2 = absorbance of *Standard solution 2***Analysis****Samples:** *Standard solution 1*, *Standard solution 2*, and *Sample solution*

Calculate the percentage of thiocyanate in the portion of Erythromycin taken:

$$\blacktriangle \text{Result} = (M_{r1}/M_{r2}) \times (A_u/W_u) \times 0.5 \times [(W_1/A_1) + (W_2/A_2)] \blacktriangle \text{(USP 1-Dec-2024)}$$

 M_{r1} = molecular weight of thiocyanate, 58.08 M_{r2} = molecular weight of potassium thiocyanate, 97.18 A_u = absorbance of the *Sample solution* W_u = weight of Erythromycin taken to prepare the *Sample solution* (mg) W_1 = weight of the potassium thiocyanate taken to prepare *Standard stock solution 1* (mg)▲ (USP 1-Dec-2024) A_1 = absorbance of *Standard solution 1* W_2 = weight of the potassium thiocyanate taken to prepare *Standard stock solution 2* (mg)▲ (USP 1-Dec-2024)

A_2 = absorbance of Standard solution 2**Acceptance criteria:** NMT 0.3%**Change to read:****• ORGANIC IMPURITIES****▲ Diluent, Solution A, Solution B, Mobile phase, Standard solution 1, Standard solution 2, Sample solution, and Chromatographic system:** Proceed as directed in the Assay. Prepare the erythromycin solutions immediately before use.**Diluted standard solution:** 0.04 mg/mL of [USP Erythromycin RS](#) prepared as follows. Dilute 1.0 mL of *Standard solution 1* to a 100-mL volumetric flask and dilute with *Diluent* to volume.**System suitability solution:** Dissolve 4 mg of [USP Erythromycin System Suitability Mixture RS](#) in 1 mL of *Diluent*.**System suitability****Sample:** *System suitability solution*[NOTE—See [Table 2](#) for the relative retention times. Use the reference chromatogram provided with [USP Erythromycin System Suitability Mixture RS](#) and the chromatogram obtained with *System suitability solution* to identify the specified impurity peaks. Use the chromatogram obtained with *Standard solution 2* to identify erythromycin B and erythromycin C.]**Suitability requirements****Peak-to-valley ratio:** NLT 1.5 for the ratio of the height of the pseudoerythromycin A enol ether peak to the height of the valley between the pseudoerythromycin A enol ether peak and the erythromycin B peak; NLT 2.0 for the ratio of the height of the erythromycin E peak to the height of the valley between erythromycin E peak and erythromycin A peak**Resolution:** NLT 1.2 between 3"-N-demethylerythromycin A and erythromycin C**Analysis****Samples:** *Standard solution 2, Sample solution, and Diluted standard solution*

Calculate the percentage of any individual impurity in the portion of Erythromycin taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times P \times (1/F) \times 100$$

 r_u = peak response of any individual impurity (the peak other than erythromycin A, erythromycin B, and erythromycin C) from the *Sample solution* r_s = peak response of erythromycin A from the *Diluted standard solution* C_s = concentration of [USP Erythromycin RS](#) in the *Diluted standard solution* (mg/mL) C_u = concentration of erythromycin in the *Sample solution* (mg/mL) P = percentage of erythromycin A in [USP Erythromycin RS](#) F = relative response factor (see [Table 2](#))**Acceptance criteria:** See [Table 2](#). The reporting threshold is 0.2%.**Table 2**

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Erythromycin A N-oxide ^a	0.3	1	1.0
Erythromycin F ^b	0.4	1	2.0
3"-N-Demethylerythromycin A ^c	0.5	1	2.0
Erythromycin C	0.55	—	—
3"-N-Demethyl-3"-N-formyl erythromycin A ^d	0.63	9.1	0.4
Erythromycin E ^e	0.9	1	3.0
Erythromycin A	1.0	—	—
Anhydroerythromycin A ^f	1.61	0.5	1.0

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Erythromycin B	1.75	—	—
Pseudoerythromycin A enol ether ^g	1.81	12.5	1.0
Erythromycin A enol ether ^h	2.3	12.5	1.0
Any other individual impurity	—	—	0.4
Total impurities	—	—	7.0

^a (3R,4S,5S,6R,7R,9R,11R,12R,13S,14R)-4-[(2,6-Dideoxy-3-C-methyl-3-O-methyl- α -L-ribo-hexopyranosyl)oxy]-14-ethyl-7,12,13-trihydroxy-3,5,7,9,11,13-hexamethyl-6-[(3,4,6-trideoxy-3-dimethylamino- β -D-xylo-hexopyranosyl)oxy]oxacyclotetradecane-2,10-dione N-oxide.

^b (3R,4S,5S,6R,7R,9R,11R,12R,13S,14R)-4-[(2,6-Dideoxy-3-C-methyl-3-O-methyl- α -L-ribo-hexopyranosyl)oxy]-14-ethyl-7,12,13-trihydroxy-3-hydroxymethyl-5,7,9,11,13-pentamethyl-6-[(3,4,6-trideoxy-3-dimethylamino- β -D-xylo-hexopyranosyl)oxy]oxacyclotetradecane-2,10-dione.

^c (3R,4S,5S,6R,7R,9R,11R,12R,13S,14R)-4-[(2,6-Dideoxy-3-C-methyl-3-O-methyl- α -L-ribo-hexopyranosyl)oxy]-14-ethyl-7,12,13-trihydroxy-3,5,7,9,11,13-hexamethyl-6-[(3,4,6-trideoxy-3-methylamino- β -D-xylo-hexopyranosyl)oxy]oxacyclotetradecane-2,10-dione.

^d (3R,4S,5S,6R,7R,9R,11R,12R,13S,14R)-4-[(2,6-Dideoxy-3-C-methyl-3-O-methyl- α -L-ribo-hexopyranosyl)oxy]-14-ethyl-7,12,13-trihydroxy-3,5,7,9,11,13-hexamethyl-6-[(3,4,6-trideoxy-3-formylmethylamino- β -D-xylo-hexopyranosyl)oxy]oxacyclotetradecane-2,10-dione.

^e (2S,4aR,4'R,5'S,6'S,7R,8S,9R,10R,12R,14R,15R,16S,16aS)-7-Ethyl-5',8,9,14-tetrahydroxy-4'-methoxy-4',6',8,10,12,14,16-heptamethyl-15-[(3,4,6-trideoxy-3-(dimethylamino)- β -D-xylo-hexopyranosyl)oxy]hexadecahydrospiro[5H,11H-1,3-dioxino[5,4-c]oxacyclotetradecin-2,2'-pyrane]-5,11-dione.

^f (1S,2R,3R,4S,5R,8R,9S,10S,11R,12R,14R)-9-[(2,6-Dideoxy-3-C-methyl-3-O-methyl- α -L-ribo-hexopyranosyl)oxy]-5-ethyl-3-hydroxy-2,4,8,10,12,14-hexamethyl-11-[(3,4,6-trideoxy-3-(dimethylamino)- β -D-xylo-hexopyranosyl)oxy]-6,15,16-trioxatricyclo[10.2.1.1⁴]hexadecan-7-one.

^g (2R,3R,6R,7S,8S,9R,10R)-7-[(2,6-Dideoxy-3-C-methyl-3-O-methyl- α -L-ribo-hexopyranosyl)oxy]-3-[(1R,2R)-1,2-dihydroxy-1-methylbutyl]-2,6,8,10,12-pentamethyl-9-[(3,4,6-trideoxy-3-(dimethylamino)- β -D-xylo-hexopyranosyl)oxy]-4,13-dioxabicyclo[8.2.1]tridec-1(12)-en-5-one.

^h (2R,3R,4S,5R,8R,9S,10S,11R,12R)-9-[(2,6-Dideoxy-3-C-methyl-3-O-methyl- α -L-ribo-hexopyranosyl)oxy]-5-ethyl-3,4-dihydroxy-2,4,8,10,12,14-hexamethyl-11-[(3,4,6-trideoxy-3-(dimethylamino)- β -D-xylo-hexopyranosyl)oxy]-6,15-dioxabicyclo[10.2.1]pentadec-1(14)-en-7-one.

▲ (USP 1-Dec-2024)

SPECIFIC TESTS

Delete the following:

- ▲ [OPTICAL ROTATION \(781S\), Procedures, Specific Rotation](#)▲ (USP 1-Dec-2024)

Change to read:

- [WATER DETERMINATION \(921\), Method I](#)

Sample solution: Use ▲▲ (USP 1-Dec-2024) [methanol](#) containing 10% of [imidazole](#) in place of [methanol](#) in the titration vessel.

Acceptance criteria: NMT ▲6.5%▲ (USP 1-Dec-2024)

- [CRYSTALLINITY \(695\)](#): Meets the requirements

ADDITIONAL REQUIREMENTS

Change to read:

- **PACKAGING AND STORAGE:** ▲Preserve in hermetic containers, and protect from light.▲ (USP 1-Dec-2024)

Change to read:

- [USP REFERENCE STANDARDS \(11\)](#):

[USP Erythromycin RS](#)

[USP Erythromycin B RS](#)

▲ (USP 1-Dec-2024)

[USP Erythromycin C RS](#)

- ▲ [USP Erythromycin System Suitability Mixture RS](#)▲ (USP 1-Dec-2024)

Topic/Question	Contact	Expert Committee
ERYTHROMYCIN	Julie Zhang Associate Science & Standards Liaison	BIO42020 Biologics Monographs 4 - Antibiotics

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 48(1)

Current DocID: GUID-43470CC7-E626-448A-AE64-1B46E925E501_5_en-US

DOI: https://doi.org/10.31003/USPNF_M30180_05_01

DOI ref: [t49dm](#)

OFFICIAL