

Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-Apr-2023
Document Type: USP Monographs
DocID: GUID-B267B93F-9C7D-48B2-98C6-3BD5DB257DFE_4_en-US
DOI: https://doi.org/10.31003/USPNF_M30232_04_01
DOI Ref: 1bk19

© 2025 USPC
Do not distribute

Erythromycin Delayed-Release Tablets

DEFINITION

Erythromycin Delayed-Release Tablets contain NLT 90.0% and NMT 120.0% of the labeled amount of erythromycin ($C_{37}H_{67}NO_{13}$).

IDENTIFICATION

- **A. THIN-LAYER CHROMATOGRAPHY**

Standard solution: 2.5 mg/mL of [USP Erythromycin RS](#) in [methanol](#)

Sample solution: Nominally 2.5 mg/mL of erythromycin from powdered Tablets in [methanol](#)

Chromatographic system

(See [Chromatography \(621\), General Procedures, Thin-Layer Chromatography](#).)

Mode: TLC

Adsorbent: 0.25-mm layer of chromatographic silica gel

Application volume: 10 μ L

Developing solvent system: [Methanol](#) and [chloroform](#) (85:15)

Spray reagent: [Alcohol](#), *p*-methoxybenzaldehyde, and [sulfuric acid](#) (90:5:5)

Analysis

Samples: Standard solution and Sample solution

Place the plate in an unlined chromatographic chamber, and develop the chromatogram until the solvent front has moved about 7 cm.

Remove the plate from the chamber, mark the solvent front, and allow the solvent to evaporate. Spray the plate with Spray reagent. Heat the plate at 100° for 10 min, and examine the chromatogram, in which erythromycin appears as a black-to-purple spot.

Acceptance criteria: The R_F value of the principal spot of the Sample solution corresponds to that of the Standard solution.

ASSAY

- [ANTIBIOTICS—MICROBIAL ASSAYS \(81\)](#)

Sample solution: Place NLT 4 Tablets in a high-speed glass blender jar with 200 mL of [methanol](#), and blend for 3 min. Add 300 mL of *Buffer B.3*, and blend for 3 min.

Analysis: Proceed as directed in the chapter. Dilute the Sample solution with *Buffer B.3* to obtain a *Test Dilution* having a concentration that is nominally equivalent to the median level of the standard.

Acceptance criteria: 90.0%–120.0%

PERFORMANCE TESTS

Change to read:

- [DISSOLUTION \(711\)](#)

Test 1: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 1.

Proceed as directed in [Dissolution \(711\), Procedure, Apparatus 1 and Apparatus 2, Delayed-Release Dosage Forms, Method B Procedure](#).

Acid stage

Medium: [Simulated gastric fluid TS](#), without pepsin; 900 mL

Apparatus 1: 100 rpm

Time: 60 min

Analysis: Do not analyze the sample at this stage.

Buffer stage

Medium: 0.05 M pH 6.8 phosphate buffer (see [Reagents, Indicators, and Solutions—Buffer Solutions](#))[▲]; 900 mL[▲] (ERR 1-Apr-2023)

Apparatus 1: 100 rpm

Time: 60 min

Buffer: pH 1.2 buffer (see [Reagents, Indicators, and Solutions—Buffer Solutions](#))

Solution A: 1 g/L of [bromocresol purple](#) in pH 4.5 phosphate buffer

Standard solution: Dissolve [USP Erythromycin RS](#) in Medium to obtain a concentration similar to that of the Sample solution.

Sample solution: If necessary, dilute a filtered portion of the solution under test with Medium to obtain a solution containing about 0.28 mg/mL of erythromycin.

Detector: UV 410 nm

Analysis

Samples: Standard solution and Sample solution

Transfer 2.0 mL of the *Standard solution* and the *Sample solution* to individual separators of a suitable size. Add 6 mL of *Buffer* and 8 mL of *Solution A*, and mix. Extract with 40.0 mL of chloroform. Determine the amount of erythromycin ($C_{37}H_{67}NO_{13}$) dissolved from UV absorbances of the chloroform extracts.

Tolerances: NLT 75% (Q) of the labeled amount of erythromycin ($C_{37}H_{67}NO_{13}$) is dissolved.

Test 2: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*. Proceed as directed under *Test 1*, except to use *Apparatus 2* at 75 rpm.

Test 3: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 3*.

Acid stage

Acid stage medium: [Simulated gastric fluid TS](#), without enzyme; 900 mL

Apparatus 1: 100 rpm

Time: 60 min

Solution A: 3.6 g/L of [dibasic sodium phosphate](#) in [water](#). Adjust with [diluted phosphoric acid](#) to a pH of 9.0.

Mobile phase: *Solution A* and [acetonitrile](#) (1:1)

Solution B: 6.8 g/L of [monobasic potassium phosphate](#) and 1.2 g/L of [sodium hydroxide](#) in [water](#)

Peak identification solution: 0.05 mg/mL of [USP Erythromycin B RS](#) and [USP Erythromycin C RS](#) prepared as follows. Transfer 2.5 mg each of [USP Erythromycin B RS](#) and [USP Erythromycin C RS](#) to a 50-mL volumetric flask, add 12.5 mL of [methanol](#), sonicate to dissolve, and dilute with *Solution B* to volume.

[*NOTE*—The typical retention times of erythromycin C and erythromycin B are 4.2 and 13.4 min, respectively.]

Standard solution: 2.5 mg/mL of [USP Erythromycin RS](#) prepared as follows. Transfer 125 mg of [USP Erythromycin RS](#) to a 50-mL volumetric flask, add 12.5 mL of [methanol](#), sonicate to dissolve, and dilute with *Solution B* to volume.

[*NOTE*—The typical retention time of erythromycin A is 7.8 min.]

Sample solution 1: Determine the average Tablet weight by weighing NLT 20 Tablets. Carefully transfer the appropriate number of intact Tablets into a suitable volumetric flask (5 Tablets into a 500-mL flask for 250-mg Tablets, 8 Tablets into a 1000-mL flask for 333-mg Tablets, and 5 Tablets into a 1000-mL flask for 500-mg Tablets). Add [methanol](#) to about 25% of the final volume, and sonicate at room temperature for about 30 min with intermittent shaking. Further add about 25% of the final volume of *Solution B* and sonicate at room temperature for about 30 min with intermittent shaking. Dilute to volume with *Solution B* and mix well. Centrifuge at 5000 rpm for 5 min and pass the supernatant through a polyvinylidene fluoride (PVDF) or other suitable filter of 0.45- μ m pore size. Discard the first 5 mL of the filtrate.

Sample solution 2: At the end of *Acid stage* dissolution, discard *Acid stage medium* and carefully transfer 1 Tablet from the dissolution vessel into a suitable volumetric flask (use a 100-mL flask for 250-mg Tablets, 200-mL flask for 333-mg Tablets, and 200-mL flask for 500-mg Tablets). Add [methanol](#) to about 25% of the final volume, and sonicate at room temperature for about 30 min with intermittent shaking. Further add about 25% of the final volume of *Solution B* and sonicate at room temperature for about 30 min with intermittent shaking. Dilute to volume with *Solution B* and mix well. Centrifuge at 5000 rpm for 5 min and pass the supernatant through a PVDF or other suitable filter of 0.45- μ m pore size. Discard the first 5 mL of the filtrate.

Blank: *Solution B* and methanol (75:25)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#)).

Mode: LC

Detector: UV 215 nm

Column: 4.6-mm x 25-cm; 5- μ m packing L1

Temperature

Autosampler: 4°

Column: 50°

Flow rate: 1.5 mL/min

Injection volume: 25 μ L

System suitability

Sample: Standard solution

[*NOTE*—The relative retention times of erythromycin C, erythromycin A, and erythromycin B are 0.53, 1.00, and 1.75, respectively.]

Suitability requirements

Tailing factor: NMT 2.0 for erythromycin A peak

Relative standard deviation: NMT 2.0% of the sum of erythromycin A, erythromycin B, and erythromycin C

Analysis

Samples: Standard solution, Sample solution 1, and Sample solution 2

Calculate the erythromycin content (A) as a percentage of the labeled amount of erythromycin:

$$\text{Result} = (r_u/r_s) \times W \times P \times (1/D_s) \times D_1 \times (1/L) \times 100$$

r_u = peak response of sum of erythromycin A, erythromycin B, and erythromycin C from Sample solution 1

r_s = peak response of sum of erythromycin A, erythromycin B, and erythromycin C from the Standard solution

W = standard weight of [USP Erythromycin RS](#) to prepare the *Standard solution* (mg)

P = content of erythromycin A, erythromycin B, and erythromycin C in [USP Erythromycin RS](#) (mg/mg)

D_S = dilution factor used in preparing the *Standard solution* (mL)

D₁ = dilution factor used in preparing *Sample solution 1* (mL)

L = label claim (mg/Tablet)

Calculate the percentage (*T*) of the labeled amount of erythromycin retained:

$$\text{Result} = (r_U/r_S) \times W \times P \times (1/D_S) \times (1/L) \times D_2 \times 100$$

r_U = peak response of sum of erythromycin A, erythromycin B, and erythromycin C from *Sample solution 2*

r_S = peak response of sum of erythromycin A, erythromycin B, and erythromycin C from the *Standard solution*

W = standard weight of [USP Erythromycin RS](#) to prepare the *Standard solution* (mg)

P = content of erythromycin A, erythromycin B, and erythromycin C in [USP Erythromycin RS](#) (mg/mg)

D_S = dilution factor used in preparing the *Standard solution* (mL)

L = label claim (mg/Tablet)

D₂ = dilution factor used in preparing *Sample solution 2* (mL)

Calculate the percentage of the labeled amount of erythromycin dissolved in *Acid stage*:

$$\text{Result} = A - T$$

A = erythromycin content as a percentage of the labeled amount

T = percentage of the labeled amount of erythromycin retained

[**NOTE**—If *T* is greater than *A*, consider the result to be zero.]

Tolerances: NMT 10% of the labeled amount of erythromycin is dissolved.

Buffer stage

Buffer stage medium: 6.8 g/L [monobasic potassium phosphate](#) in water with pH 6.8 adjusted by 5 N [sodium hydroxide](#); 900 mL

Apparatus 1: 100 rpm

Time: 35 min

Solution A and Mobile phase: Prepare as directed in *Acid stage*.

Standard solution: Transfer a suitable amount of [USP Erythromycin RS](#) into an appropriate volumetric flask. See [Table 1](#). Add [methanol](#) to about 5% of the final volume and sonicate to dissolve. Dilute with *Buffer stage medium* to volume with intermittent shaking and mix well. [**NOTE**—The typical retention time of erythromycin A is 3.8 min.]

Table 1

Tablet Label Claim (mg)	Weight of USP Erythromycin RS (mg)	Volumetric Flask (mL)
250	59	200
333	39	100
500	59	100

Sample solution: Prepare as directed in *Acid stage* with a new set of Tablets. After 60 min with *Acid stage medium*, immediately replace with *Buffer stage medium*. After 35 min, pass a portion of the solution through a PVDF or other suitable filter of 0.45-μm pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm x 15-cm; 5-μm packing L1

Temperature

Autosampler: 5°

Column: 50°

Flow rate: 2.0 mL/min**Injection volume:** 100 µL**System suitability****Sample:** Standard solution**Suitability requirements****Tailing factor:** NMT 2.0 for erythromycin A peak**Relative standard deviation:** NMT 2.0% of erythromycin A**Analysis****Samples:** Standard solution and Sample solution

Calculate the percentage of the labeled amount of erythromycin dissolved:

$$\text{Result} = (r_U/r_S) \times C_S \times (1/L) \times V \times 100$$

 r_U = peak response of erythromycin A from the Sample solution r_S = peak response of erythromycin A from the Standard solution C_S = concentration of erythromycin A in the Standard solution (mg/mL) L = label claim (mg/Tablet) V = volume of buffer medium**Tolerances:** NLT 80% (Q) of the labeled amount of erythromycin is dissolved.

- **Uniformity of Dosage Units (905):** Meet the requirements

SPECIFIC TESTS

- **WATER DETERMINATION (921), Method I**

Analysis: Use 20 mL of methanol containing 10% of imidazole in place of methanol in the titration vessel.**Acceptance criteria:** NMT 6.0%**ADDITIONAL REQUIREMENTS**

- **PACKAGING AND STORAGE:** Preserve in tight containers.
- **LABELING:** The labeling indicates the *Dissolution Test* with which the product complies.
- **USP REFERENCE STANDARDS (11):**

USP Erythromycin RSUSP Erythromycin B RSUSP Erythromycin C RS**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.We apologize for the inconvenience. The exact auxiliary information for this Documentary Standard is currently unavailable. Please contact Documentary Standards Support (stdsmonographs@usp.org) for assistance during this time.**Chromatographic Database Information:** [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 39(3)

Current DocID: GUID-B267B93F-9C7D-48B2-98C6-3BD5DB257DFE_4_en-US**DOI: https://doi.org/10.31003/USPNF_M30232_04_01****DOI ref: [1bki9](#)**