Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-May-2018
Document Type: USP Monographs
DocId: GUID-75836540-D70D-4CB4-8BFC-BC4990566CEF_3_en-US
DOI: https://doi.org/10.31003/USPNF_M29695_03_01
DOI Ref: ph6wq

© 2025 USPC Do not distribute

Epirubicin Hydrochloride Injection

DEFINITION

Epirubicin Hydrochloride Injection contains NLT 90.0% and NMT 110.0% of the labeled amount of epirubicin hydrochloride ($C_{27}H_{29}NO_{11} \cdot HCI$).

IDENTIFICATION

- A. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.
- **B.** The UV absorption spectrum of the major peak of the *Sample solution* and the *Standard solution* as obtained in the *Assay* exhibit maxima and minima at the same wavelengths.

ASSAY

• PROCEDURE

Solution A: Dissolve 2.9 g of sodium lauryl sulfate in 950 mL of water. To the resulting solution add 1.4 mL of phosphoric acid and dilute with

Mobile phase: Acetonitrile and Solution A (50:50)

Standard solution: 1 mg/mL of <u>USP Epirubicin Hydrochloride RS</u> in *Mobile phase* **Sample solution:** Nominally 1 mg/mL of epirubicin hydrochloride from Injection

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm. When this procedure is used for Identification test B, use a diode array detector set at 200-400 nm.

Column: 4.6-mm × 25-cm; 5-µm packing L1

Flow rate: 1 mL/min Injection volume: 10 µL

System suitability

Sample: Standard solution **Suitability requirements**

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of epirubicin hydrochloride ($C_{27}H_{29}NO_{11}\cdot HCI$) in the portion of Injection taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times P \times 100$$

 r_{ij} = peak response from the Sample solution

 $r_{_{\rm S}}$ = peak response from the Standard solution

C_s = concentration of <u>USP Epirubicin Hydrochloride RS</u> in the Standard solution (mg/mL)

 $C_{\mu\nu}$ = nominal concentration of epirubicin hydrochloride in the Sample solution (mg/mL)

P = potency of epirubicin hydrochloride in <u>USP Epirubicin Hydrochloride RS</u> (mg/mg)

Acceptance criteria: 90.0%-110.0%

IMPURITIES

Organic Impurities

Solution A: Dissolve 3.7 g of sodium lauryl sulfate in 950 mL of water. To the resulting solution add 28 mL of phosphoric acid and dilute with water to 1 L.

https://trundtamthuoc.com/

Solution B: Dilute 28 mL of phosphoric acid with water to 1 L. **Mobile phase:** Acetonitrile, methanol, and *Solution A* (29:17:54) **Diluent:** Acetonitrile, methanol, and *Solution B* (29:17:27)

System suitability solution: 0.1 mg/mL each of <u>USP Epirubicin Hydrochloride RS</u> and <u>USP Doxorubicin Hydrochloride RS</u> in *Mobile phase*Peak identification solution: Dissolve 10 mg of <u>USP Doxorubicin Hydrochloride RS</u> in a mixture of 5 mL of water and 5 mL of phosphoric acid.

Allow to stand for 30 min. Adjust with 2 M sodium hydroxide to a pH of 2.6. Add 15 mL of acetonitrile and 10 mL of methanol, and mix.

Standard stock solution: 0.5 mg/mL of USP Epirubicin Hydrochloride RS in Mobile phase

Standard solution: 0.01 mg/mL of USP Epirubicin Hydrochloride RS from Standard stock solution in Diluent

Sample solution: Nominally 1 mg/mL of epirubicin hydrochloride from Injection in Diluent. Store at room temperature and use within 4 h.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 25-cm; 5-µm packing L13

Column temperature: 35° Flow rate: 2.5 mL/min Injection volume: 10 µL

Run time

For the Standard solution: About 2 times the retention time of the epirubicin peak

For the System suitability solution, Peak identification solution, and Sample solution: About 4.5 times the retention time of the epirubicin peak

System suitability

Samples: System suitability solution, Peak identification solution, and Standard solution. [Note—Use the Peak identification solution to identify the doxorubicinone peak.]

Suitability requirements

Resolution: NLT 2.0 between epirubicin and doxorubicin, System suitability solution

Relative standard deviation: NMT 5.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each impurity in the portion of Injection taken:

Result =
$$(r_{U}/r_{S}) \times (C_{S}/C_{U}) \times P \times (1/F) \times 100$$

 r_{ij} = peak response of each impurity from the Sample solution

 r_s = peak response of epirubicin from the Standard solution

C_s = concentration of <u>USP Epirubicin Hydrochloride RS</u> in the Standard solution (mg/mL)

C₁₁ = nominal concentration of epirubicin hydrochloride in the Sample solution (mg/mL)

P = potency of epirubicin hydrochloride in <u>USP Epirubicin Hydrochloride RS</u> (mg/mg)

F = relative response factor (see <u>Table 1</u>)

Acceptance criteria: See <u>Table 1</u>. The reporting threshold is 0.05% of the area of the epirubicin peak in the Standard solution.

Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Doxorubicinone ^a	0.3	1.4	1.8
Daunorubicinone ^b	0.4	1.0	0.5
Doxorubicin	0.8	1.0	1.0

https://trumgtamthuoc.com/

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Epirubicin	1.0	-	-
Dihydro daunorubicin [©]	1.1	1.0	0.5
Daunorubicin	1.5	1.0	0.5
Epidaunorubicin ^{d.e}	1.7	1.0	-
Epirubicin dimer ^{e.f}	2.1	1.0	-
Any other individual impurity	-	1.0	0.5
Total impurities	-	-	3.9

a (8S,10S)-6,8,10,11-Tetrahydroxy-8-(hydroxyacetyl)-1-methoxy-7,8,9,10-tetrahydrotetracene-5,12-dione.

SPECIFIC TESTS

- pH (791): 2.5-3.5
- STERILITY TESTS (71): Meets the requirements
- BACTERIAL ENDOTOXINS TEST (85): NMT 1.61 USP Endotoxin Units/mg of epirubicin
- OTHER REQUIREMENTS: It meets the requirements in Injections and Implanted Drug Products (1).

ADDITIONAL REQUIREMENTS

• Packaging and Storage: Preserve in light-resistant containers. Store in a refrigerator.

USP REFERENCE STANDARDS (11)
 USP Doxorubicin Hydrochloride RS
 USP Epirubicin Hydrochloride RS

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
EPIRUBICIN HYDROCHLORIDE INJECTION	Documentary Standards Support	SM12020 Small Molecules 1

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 40(2)

Current DocID: GUID-75836540-D70D-4CB4-8BFC-BC4990566CEF_3_en-US Previous DocID: GUID-75836540-D70D-4CB4-8BFC-BC4990566CEF_1_en-US

DOI: https://doi.org/10.31003/USPNF_M29695_03_01

b (8S,10S)-8-Acetyl-6,8,10,11-tetrahydroxy-1-methoxy-7,8,9,10-tetrahydrotetracene-5,12-dione.

^c Dihydrodaunorubicin; (8S,10S)-10-[(3-Amino-2,3,6-trideoxy- α -L-lyxo-hexopyranosyl)oxy]-6,8,11-trihydroxy-8-(1-hydroxyethyl)-1-methoxy-7,8,9,10-tetrahydrotetracene-5,12-dione.

d (8S,10S)-8-Acetyl-10-[(3-amino-2,3,6-trideoxy- α - ι -arabino-hexopyranosyl)oxy]-6,8,11-trihydroxy-1-methoxy-7,8,9,10-tetrahydrotetracene-5,12-dione.

^e These impurities do not have individual limits; they are included in total impurities.

 $^{^{\}rm f}$ 8,8'-[(2*R*,4*R*)-4-Hydroxy-2-(hydroxymethyl)-1,3-dioxolan-2,4-diyl]bis{(8*S*,10*S*)-10-[(3-amino-2,3,6-trideoxy-α-L-*arabino-hexopyranosyl*)oxy]-6,8,11-trihydroxy-1-methoxy-7,8,9,10-tetrahydrotetracene-5,12-dione}.

