Status: Currently Official on 17-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-B67119C1-C2AB-48E2-8277-65A614A34E49_6_en-US
DOI: https://doi.org/10.31003/USPNF_M1985_06_01
DOI Ref: x4abi

© 2025 USPC Do not distribute

Entecavir

 $C_{12}H_{15}N_5O_3 \cdot H_2O$ 295.29

6H-Purin-6-one, 2-amino-1,9-dihydro-9-[(1S,3R,4S)-4-hydroxy-3-(hydroxymethyl)-2-methylenecyclopentyl]-, monohydrate;

 $9-[(1S,3R,4S)-4-Hydroxy-3-(hydroxymethyl)-2-methylenecyclopentyl] guanine monohydrate \quad CAS~RN^{\circledR}:~209216-23-9;~UNII:~5968Y6H45M.$

Anhydrous 277.28

DEFINITION

Entecavir is a monohydrate and contains NLT 98% and NMT 102% of entecavir (C₁₂H₁₅N₅O₃), calculated on the anhydrous basis.

IDENTIFICATION

Change to read:

- A. <u>Spectroscopic Identification Tests (197), Infrared Spectroscopy</u>: 197A or 197K_{▲ (CN 1-May-2020)}
- B. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

• PROCEDURE

Solution A: Acetonitrile and water (3:97)

Solution B: Acetonitrile

Mobile phase: See <u>Table 1</u>. [Note—The gradient elution times are established on an HPLC system with a dwell volume of approximately 1.0 mL.]

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	100	0
8	100	0
50	77	23
75	17	83
90	100	0
100	100	0

System suitability stock solution: 1.0 mg/mL of USP Entecavir System Suitability Mixture RS in methanol

 $\textbf{System suitability solution:} \ 0.2 \ \text{mg/mL of} \ \underline{\textbf{USP Entecavir System Suitability Mixture RS}} \ \text{in Solution A from System suitability stock solution} \\$

Standard stock solution: 1.0 mg/mL of <u>USP Entecavir Monohydrate RS</u> in methanol. Sonicate as needed. **Standard solution:** 0.2 mg/mL of <u>USP Entecavir Monohydrate RS</u> in *Solution A* from the *Standard stock solution*

Sample stock solution: 1.0 mg/mL of Entecavir in methanol. Sonicate as needed. **Sample solution:** 0.2 mg/mL of Entecavir in *Solution A* from *Sample stock solution*

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

https://trungtamthuoc.com/

Detector: UV 254 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Flow rate: 1 mL/min Injection volume: 10 μL

System suitability

Samples: System suitability solution and Standard solution

[Note—See <u>Table 2</u> for the relative retention times of the components in the *System suitability solution*.]

Suitability requirements

Resolution: NLT 3.5 between entecavir 1-epimer and entecavir; NLT 2.0 between entecavir and 8-hydroxy entecavir, System suitability

solution

Tailing factor: 0.8–1.5 for entecavir, *System suitability solution* **Relative standard deviation:** NMT 1.5%, *Standard solution*

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of entecavir $(C_{12}H_{15}N_5O_3)$ in the portion of Entecavir taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times 100$$

 r_{ij} = peak response of entecavir from the Sample solution

 $r_{\rm s}$ = peak response of entecavir from the Standard solution

C_s = concentration of <u>USP Entecavir Monohydrate RS</u> in the *Standard solution* (mg/mL)

C, = concentration of Entecavir in the Sample solution (mg/mL)

Acceptance criteria: 98%-102% on the anhydrous basis

IMPURITIES

• ORGANIC IMPURITIES

Solution A, Solution B, Mobile phase, System suitability stock solution, System suitability solution, Sample stock solution, Sample

solution, and Chromatographic system: Proceed as directed in the Assay.

Standard stock solution: Use the Standard solution from the Assay.

Standard solution: 0.2 µg/mL of <u>USP Entecavir Monohydrate RS</u> in Solution A from the Standard stock solution

System suitability

Samples: System suitability solution and Standard solution

[Note—See <u>Table 2</u> for relative retention times of the components in the System suitability solution.]

Suitability requirements

Resolution: NLT 3.5 between entecavir 1-epimer and entecavir; NLT 2.0 between entecavir and 8-hydroxy entecavir, System suitability solution

Tailing factor: 0.8–1.5 for entecavir, *System suitability solution* **Relative standard deviation:** NMT 10.0%, *Standard solution*

Analysis

Samples: Sample solution and Standard solution

Calculate the percentage of each impurity in the portion of Entecavir taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

 r_{ij} = peak response of each impurity from the Sample solution

 r_s = peak response of entecavir from the Standard solution

C_s = concentration of <u>USP Entecavir Monohydrate RS</u> in the *Standard solution* (mg/mL)

 C_{II} = concentration of Entecavir in the Sample solution (mg/mL)

F = relative response factor (see <u>Table 2</u>)

Acceptance criteria: See Table 2. Disregard any peak less than 0.05%.

Table 2

https://trungtamthuoc.com/

USP-NF Entecavir

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Furoentecavir ^a	0.73	1.0	0.1
Entecavir 1-epimer ^b	0.93	1.0	0.1
Entecavir 3-epimer [©]	0.96	1.0	0.1
Entecavir	1.0	-	ı
8-Hydroxy entecavir ^d	1.03	0.67	0.1
Entecavir 4-epimer ^{<u>e</u>}	1.08	1.0	0.1
8-Methoxy entecavir ^f	1.27	0.67	0.1
4-Dimethylsilyl entecavir ^g	1.84	1.0	0.1
Entecavir related compound A	3.41	-	<u>_h</u>
Any unspecified impurity	-	1.0	0.1
Total impurities ⁱ	-		0.3

a 9-[(3aS,4S,6S,6aR)-3a,6-Dihydroxyhexahydro-1*H*-cyclopenta[c]furan-4-yl]guanine.

• LIMIT OF ENTECAVIR RELATED COMPOUND A

Solution A: 0.1% (v/v) trifluoroacetic acid in water

Solution B: 0.1% (v/v) trifluoroacetic acid in acetonitrile

Mobile phase: See <u>Table 3</u>. [Note—The gradient elution times are established on an HPLC system with a dwell volume of approximately 1.0 mL.]

Table 3

Time (min)	Solution A (%)	Solution B (%)
0	65	35
8	53	47
8.1	65	35
11	65	35

Standard solution: $2 \mu g/mL$ of USP Entecavir Related Compound A RS in methanol

Sample solution: 1.0 mg/mL of Entecavir in methanol. Sonicate as needed.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

b 9-[(1*R*,3*R*,4*S*)-4-Hydroxy-3-(hydroxymethyl)-2-methylenecyclopentyl]guanine.

 $^{^{\}rm c} \;\; 9\hbox{-}[(1S,3S,4S)\hbox{-}4\hbox{-Hydroxy-}3\hbox{-}(hydroxymethyl)\hbox{-}2\hbox{-methylenecyclopentyl}] guanine.$

d 8-Hydroxy-9-[(1S,3R,4S)-4-hydroxy-3-(hydroxymethyl)-2-methylenecyclopentyl]guanine.

^e 9-[(1*S*,3*R*,4*R*)-4-Hydroxy-3-(hydroxymethyl)-2-methylenecyclopentyl]guanine.

^f 8-Methoxy-9-[(1S,3R,4S)-4-hydroxy-3-(hydroxymethyl)-2-methylenecyclopentyl]guanine.

 $^{^{9} \}hspace{0.1cm} \hbox{-} \hbox{[(1S,3R,4S)-4-Hydroxydimethylsilyl-3-(hydroxymethyl)-2-methylenecyclopentyl]} guanine.$

h For information only; quantitated in the test for Limit of Entecavir Related Compound A.

i Includes the sum of all the impurities found in the tests for Limit of Entecavir Related Compound A and Organic Impurities.

https://trungtamthuoc.com/

Column: 4.6-mm × 5-cm; 5-µm packing L1

Temperatures
Autosampler: 4°
Column: 30°
Flow rate: 2 mL/min
Injection volume: 10 µL

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: 0.8-1.5

Relative standard deviation: NMT 3.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of entecavir related compound A in the portion of Entecavir taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times 100$$

 r_{ij} = peak response of entecavir related compound A from the Sample solution

r_s = peak response of entecavir related compound A from the *Standard solution*

 C_S = concentration of <u>USP Entecavir Related Compound A RS</u> in the *Standard solution* (mg/mL)

 C_{ij} = concentration of Entecavir in the Sample solution (mg/mL)

Acceptance criteria: NMT 0.1%

SPECIFIC TESTS

• Water Determination (921), Method I, Method Ic: 5.5%-7.0%

• OPTICAL ROTATION (781S), Procedures, Specific Rotation

Sample solution: 10 mg/mL of Entecavir in a mixture of dimethylformamide and methanol (50:50)

Acceptance criteria: +24° to +30°

ADDITIONAL REQUIREMENTS

• Packaging and Storage: Preserve in well-closed containers, protected from light. Store at room temperature.

• USP REFERENCE STANDARDS (11)

USP Entecavir Monohydrate RS

USP Entecavir Related Compound A RS

3-Benzyl-4-silyl entecavir;

 $9\hbox{-}[(1S,\!3R,\!4S)\hbox{-}4\hbox{-}Dimethylphenylsilyl-3\hbox{-}(benzyloxymethyl)\hbox{-}2\hbox{-}methylenecyclopentyl] guanine.}$

 $C_{27}H_{31}N_5O_2Si$ 485.65

USP Entecavir System Suitability Mixture RS

The mixture contains entecavir monohydrate and the following impurities (other impurities may also be present):

Entecavir 1-epimer. 8-Hydroxy entecavir.

8-Methoxy entecavir.

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
ENTECAVIR	Documentary Standards Support	SM12020 Small Molecules 1
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM12020 Small Molecules 1

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 43(4)

Current DocID: GUID-B67119C1-C2AB-48E2-8277-65A614A34E49_6_en-US

DOI: https://doi.org/10.31003/USPNF_M1985_06_01

DOI ref: x4abi