Status: Currently Official on 14-Feb-2025 Official Date: Official as of 01-May-2020 Document Type: USP Monographs DocId: GUID-C2D417C5-3325-4F97-A040-FDD124E7A721_2_en-US DOI: https://doi.org/10.31003/USPNF_M5156_02_01 DOI Ref: rb2gx

© 2025 USPC Do not distribute

Dronedarone Hydrochloride

 $C_{31}H_{44}N_2O_5S \cdot HCI$ 593.2

N-{2-Butyl-3-[4-(3-dibutylaminopropoxy)benzoyl] benzofuran-5-yl}methanesulfonamide, hydrochloride;

Methanesulfonamide, *N*-[2-butyl-3-[4-[3-(dibutylamino)propoxy]benzoyl]-5-benzofuranyl]-, monohydrochloride CAS RN[®]: 141625-93-6; UNII: FA36DV299Q.

DEFINITION

Dronedarone Hydrochloride contains NLT 98.0% and NMT 101.5% of dronedarone hydrochloride, calculated on the anhydrous and solvent-free basis

IDENTIFICATION

Change to read:

- A. ▲ Spectroscopic Identification Tests (197), Infrared Spectroscopy: 197K (CN 1-May-2020): Meets the requirements
- B. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.
- C. IDENTIFICATION TESTS—GENERAL, Chloride (191)

Sample solution: Dissolve 100 mg of Dronedarone Hydrochloride in 8 mL of methanol and dilute with water to 10.0 mL. Use 2.0 mL for the analysis.

Acceptance criteria: Meets the requirements

ASSAY

• Procedure

Buffer: Combine 2.0 mL of triethylamine with 1 L of water and adjust with phosphoric acid to a pH of 3.0.

Mobile phase: Acetonitrile and Buffer (50:50)

 $\textbf{System suitability stock solution:} \ 1 \ \text{mg/mL each of} \ \underline{\textbf{USP Dronedarone Hydrochloride RS}} \ \text{and} \ \underline{\textbf{USP Dronedarone Related Compound A RS}} \ \text{in}$

methanol

System suitability solution: 0.01 mg/mL each of USP Dronedarone Hydrochloride RS and USP Dronedarone Related Compound A RS in

Mobile phase from System suitability stock solution

Standard solution: 0.1 mg/mL of USP Dronedarone Hydrochloride RS in Mobile phase

Sample solution: 0.1 mg/mL of Dronedarone Hydrochloride in Mobile phase

Chromatographic system

Mode: LC

Detector: UV 288 nm

Column: 4.6-mm × 25-cm; 5-µm packing L10

Flow rate: 0.8 mL/min Injection volume: 20 µL

Run time: NLT 2.15 times the retention time of dronedarone

System suitability

Samples: System suitability solution and Standard solution

[Note—The relative retention times for dronedarone related compound A and dronedarone are 0.71 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 8 between dronedarone and dronedarone related compound A, System suitability solution

Tailing factor: 0.8-2.2 for dronedarone, System suitability solution

Relative standard deviation: NMT 0.5%, Standard solution

https://trungtamthuoc.com/

Samples: Standard solution and Sample solution

Calculate the percentage of dronedarone hydrochloride ($C_{21}H_{AA}N_2O_sS \cdot HCI$) in the portion of Dronedarone Hydrochloride taken:

Result =
$$(r_{IJ}/r_{\odot}) \times (C_{\odot}/C_{IJ}) \times 100$$

 r_{ij} = peak response of dronedarone from the Sample solution

 r_s = peak response of dronedarone from the Standard solution

C_s = concentration of <u>USP Dronedarone Hydrochloride RS</u> in the Standard solution (mg/mL)

C₁₁ = concentration of Dronedarone Hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: 98.0%-101.5% on the anhydrous and solvent-free basis

IMPURITIES

• Residue on Ignition (281): NMT 0.1%

• ORGANIC IMPURITIES

Solution A: Combine 2 mL of triethylamine with 950 mL of water. Adjust with phosphoric acid to a pH of 4.0 and then dilute with water to 1 L.

Solution B: Acetonitrile

Mobile phase: See <u>Table 1</u>. [Note—Collect data for 58 min.]

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	70	30
15	60	40
25	60	40
40	50	50
45	40	60
58	40	60
60	70	30
70	70	30

Diluent: Acetonitrile and Solution A, 50:50

Standard stock solution: 0.2 mg/mL of <u>USP Dronedarone Hydrochloride RS</u> and 0.4 mg/mL of <u>USP Dronedarone Related Compound A RS</u>, respectively, in methanol

Standard solution: 2 μg/mL of <u>USP Dronedarone Hydrochloride RS</u> and 4 μg/mL of <u>USP Dronedarone Related Compound A RS</u>, respectively, in *Diluent* from the *Standard stock solution*

Sensitivity solution: 1 μ g/mL of <u>USP Dronedarone Hydrochloride RS</u> and 2 μ g/mL of <u>USP Dronedarone Related Compound A RS</u> in *Diluent* from the *Standard solution*

Sample solution: 2 mg/mL of Dronedarone Hydrochloride in *Diluent*. Sonicate for 5 min to dissolve completely. Pass through a suitable filter of 0.45-µm pore size.

Chromatographic system

Mode: LC

Detector: UV 246 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing L10

Flow rate: 0.8 mL/minInjection volume: $25 \mu L$

System suitability

Samples: Standard solution and Sensitivity solution

[Note—The relative retention times for dronedarone related compound A and dronedarone are 0.58 and 1.00, respectively.]

Suitability requirements

Resolution: NLT 25 between dronedarone and dronedarone related compound A, Standard solution

Signal-to-noise ratio: NLT 10 for dronedarone and NLT 20 for dronedarone related compound A, Sensitivity solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of dronedarone related compound A in the portion of Dronedarone Hydrochloride taken:

Result =
$$(r_{ij}/r_{s}) \times (C_{s}/C_{ij}) \times 100$$

 r_{ij} = peak response of dronedarone related compound A from the Sample solution

 r_s = peak response of dronedarone related compound A from the Standard solution

C_s = concentration of <u>USP Dronedarone Related Compound A RS</u> in the Standard solution (mg/mL)

C₁₁ = concentration of Dronedarone Hydrochloride in the Sample solution (mg/mL)

Calculate the percentage of any unspecified impurity in the portion of Dronedarone Hydrochloride taken:

Result =
$$(r_{ij}/r_s) \times (C_s/C_{ij}) \times 100$$

 r_{ii} = peak response of any unspecified impurity from the Sample solution

 r_s = peak response of dronedarone from the Standard solution

C_s = concentration of <u>USP Dronedarone Hydrochloride RS</u> in the Standard solution (mg/mL)

C, = concentration of Dronedarone Hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: Disregard peaks below 0.05%.

Dronedarone related compound A: NMT 0.15%

Any unspecified impurity: NMT 0.10%

Total impurities: NMT 0.3%

SPECIFIC TESTS

• Water Determination, Method Ia(921): NMT 1.0%

ADDITIONAL REQUIREMENTS

• Packaging and Storage: Protect from light and store at room temperature.

USP REFERENCE STANDARDS (11)
 USP Dronedarone Hydrochloride RS
 USP Dronedarone Related Compound A RS

N-(2-Butyl-3-{4-[3-(butylamino)propoxy]benzoyl}benzofuran-5-yl)methanesulfonamide.

C₂₇H₃₆N₂O₅S 500.65

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
DRONEDARONE HYDROCHLORIDE	Documentary Standards Support	SM22020 Small Molecules 2

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 41(2)

Current DocID: GUID-C2D417C5-3325-4F97-A040-FDD124E7A721_2_en-US

DOI: https://doi.org/10.31003/USPNF_M5156_02_01

DOI ref: rb2gx