Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-CCB7BE4D-1C9C-48BE-B90C-8FAB34403D7D_3_en-US
DOI: https://doi.org/10.31003/USPNF_M28400_03_01
DOI Ref: akd7r

© 2025 USPC Do not distribute

Doxylamine Succinate

 $C_{17}H_{22}N_2O \cdot C_4H_6O_4$ 388.46

Ethanamine, N,N-dimethyl-2-[1-phenyl-1-(2-pyridinyl)ethoxy]-, butanedioate (1:1);

 $2-[\alpha-[2-(Dimethylamino)ethoxy]-\alpha-methylbenzyl]$ pyridine succinate (1:1);

N,N-Dimethyl-2-[1-phenyl-1-(pyridin-2-yl)ethoxy]ethan-1-amine succinate CAS RN®: 562-10-7.

DEFINITION

Change to read:

Doxylamine Succinate contains NLT 98.0% and $^{\blacktriangle}$ NMT 102.0% $_{\blacktriangle}$ (USP _{1-May-2019}) of doxylamine succinate ($^{C}_{17}H_{22}N_{2}O \cdot C_{4}H_{6}O_{4}$), calculated on the dried basis.

IDENTIFICATION

Change to read:

• A. Spectroscopic Identification Tests (197), Ultraviolet-Visible Spectroscopy: 197U (CN 1-May-2020)

Analytical wavelength: 262 nm

Sample solution: $20 \, \mu g/mL$ of Doxylamine Succinate in $0.1 \, N$ hydrochloric acid

Acceptance criteria: Absorptivities, calculated on the dried basis, do not differ by more than 3.0%

Delete the following:

▲ B. <u>IDENTIFICATION—ORGANIC NITROGENOUS BASES (181)</u>: It meets the requirements. (USP 1-May-2019)

Add the following:

▲ • B. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay. (USP 1-May-2019)

· C.

Sample solution: Dissolve 500 mg of Doxylamine Succinate in 5 mL of <u>water</u>, and add a slight excess of <u>6 N ammonium hydroxide</u>. Extract the liberated doxylamine with several portions of ether, discard the ether extracts, and evaporate the aqueous solution on a steam bath to dryness. Add 2 mL of 3 N <u>hydrochloric acid</u>, and again evaporate on the steam bath to dryness. Cool, add about 10 mL of ether, allow to stand for a few minutes, and decant the clear supernatant. Evaporate the ether solution to dryness, and dry the residue at 105° for 30 min.

Acceptance criteria: The succinic acid melts between 184° and 188°, as indicated for Class I under <u>Melting Range or Temperature (741)</u>.

<u>Procedures.</u>

ASSAY

Change to read:

• Procedure

▲Solution A: 50 mM ammonium acetate in water; adjusted with glacial acetic acid to a pH of 4.0

Solution B: <u>Acetonitrile</u> **Mobile phase:** See <u>Table 1</u>.

Table 1

Time	Solution A	Solution B
(min)	(%)	(%)
0	90	10

Time (min)	Solution A (%)	Solution B (%)
2	90	10
15	40	60
20	40	60
21	90	10
25	90	10

Diluent: Solution A and Solution B (90:10)

Standard solution: 0.1 mg/mL of <u>USP Doxylamine Succinate RS</u> in *Diluent*

Sample solution: 0.1 mg/mL of Doxylamine Succinate in Diluent

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 262 nm

Column: 4.6-mm × 15-cm; 5-µm packing L7

Column temperature: 30° Flow rate: 1 mL/min Injection volume: 20 μL System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 0.73%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of doxylamine succinate $(C_{17}H_{22}N_2O \cdot C_4H_6O_4)$ in the portion of Doxylamine Succinate taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times 100$$

 r_{ij} = peak response of doxylamine from the Sample solution

r_s = peak response of doxylamine from the Standard solution

 C_s = concentration of <u>USP Doxylamine Succinate RS</u> in the Standard solution (mg/mL)

C₁₁ = concentration of Doxylamine Succinate in the Sample solution (mg/mL)

Acceptance criteria: 98.0%-102.0% on the dried basis (USP 1-May-2019)

IMPURITIES

• Residue on Ignition (281): NMT 0.1%

Delete the following:

▲ • VOLATILE RELATED COMPOUNDS

Sample solution: Dissolve 650 mg in 20 mL of 0.1 N hydrochloric acid in a separator. Render the solution alkaline with 2.5 N sodium hydroxide, and immediately extract with four 25-mL portions of ether, filtering each extract through an ether-saturated pledget of cotton. Evaporate the combined ether extracts on a water bath with the aid of a current of air to dryness at a temperature not exceeding 50°, and dissolve the residue in 5 mL of alcohol.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: GC

Detector: Flame ionization

Column: 4-mm × 2-m glass column containing 5% packing G16 and 5% packing G12 on 60- to 80-mesh S1A

Temperatures
Column: 212°
Injection port: 250°
Detector block: 250°
Carrier gas: Dry helium

Injection volume: 1 µL

Acceptance criteria: NMT 2.0%, the total relative area of all extraneous peaks (except that of the solvent peak); and NMT 1.0%, the relative area of any individual extraneous peak (USP 1-May-2019)

Add the following:

▲ • ORGANIC IMPURITIES

Solution A, Solution B, Mobile phase, Diluent, and Chromatographic system: Proceed as directed in the Assay.

Standard solution: 0.001 mg/mL each of USP Doxylamine Succinate RS and USP Carbinoxamine Related Compound C RS in Diluent

Sample solution: 1.0 mg/mL of Doxylamine Succinate in Diluent

System suitability

Sample: Standard solution

[Note—See <u>Table 2</u> for relative retention times.]

Suitability requirements

Resolution: NLT 2 between doxylamine and carbinoxamine related compound C

Relative standard deviation: NMT 5.0% for the doxylamine and carbinoxamine related compound C peaks

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of carbinoxamine related compound C in the portion of Doxylamine Succinate taken:

Result =
$$(r_{IJ}/r_{S}) \times (C_{S}/C_{IJ}) \times 100$$

 r_{ij} = peak response of carbinoxamine related compound C from the Sample solution

r_s = peak response of carbinoxamine related compound C from the *Standard solution*

C_s = concentration of <u>USP Carbinoxamine Related Compound C RS</u> in the *Standard solution* (mg/mL)

C_{II} = concentration of Doxylamine Succinate in the Sample solution (mg/mL)

Calculate the percentage of each specified and any unspecified impurity in the portion of Doxylamine Succinate taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times (1/F) \times 100$$

 r_{ij} = peak response of each specified and any unspecified impurity from the Sample solution

 $r_{\rm s}$ = peak response of doxylamine from the Standard solution

C_s = concentration of <u>USP Doxylamine Succinate RS</u> in the Standard solution (mg/mL)

C₁₁ = concentration of Doxylamine Succinate in the Sample solution (mg/mL)

F = relative response factor of each specified and any unspecified impurity (see <u>Table 2</u>)

Acceptance criteria: See <u>Table 2</u>. The reporting threshold is 0.05%.

Table 2

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Doxylamine pyridinyl			
<i>N</i> -oxide ^{<u>a</u>}	0.64	2.1	0.10
Doxylamine dioxide ^b	0.70	1.8	0.10
Doxylamine pyridine-4-yl			
isomer [©]	0.81	1.0	0.15
Carbinoxamine related		_	
compound C	0.95		0.5
Doxylamine	1.0	_	I
Doxylamine ethylamine			
<i>N</i> -oxide ^{<u>d</u>}	1.06	1.0	0.10

<u> </u>	Relative Retention	Relative Response	Acceptance Criteria,	
Name	Time	Factor	NMT (%)	
Doxylamine alcohol ^{<u>e</u>}	1.30	1.8	0.15	
2-Benzoylpyridine ^f	1.44	5.8	0.15	
Any unspecified impurity	-	1.0	0.10	
Total impurities	_	_	1.0 _{▲ (USP 1-May-2019)}	

^a 2-[1-(2-(Dimethylamino)ethoxy)-1-phenylethyl]pyridine 1-oxide.

- ^c *N,N*-Dimethyl-2-[1-phenyl-1-(pyridin-4-yl)ethoxy]ethan-1-amine.
- d N,N-Dimethyl-2-[1-phenyl-1-(pyridin-2-yl)ethoxy]ethan-1-amine oxide.
- ^e 1-Phenyl-1-(pyridin-2-yl)ethan-1-ol.

SPECIFIC TESTS

Delete the following:

- ▲• MELTING RANGE OR TEMPERATURE, Class I(741): 103°-108°, the range between the beginning and end of melting does not exceed 3°. (USP 1-May-
- Loss on Drying (731)

Analysis: Dry under vacuum over phosphorus pentoxide for 5 h.

Acceptance criteria: NMT 0.5%

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in well-closed, light-resistant containers.

Change to read:

- USP REFERENCE STANDARDS (11)
- ▲ <u>USP Carbinoxamine Related Compound C RS</u>

N,N-Dimethyl-2-[phenyl(pyridin-2-yl)methoxy]ethan-1-amine;

Desmethyl doxylamine.

 $C_{16}H_{20}N_2O$ 256.35_{\(\text{USP 1-May-2019}\)}

USP Doxylamine Succinate RS

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
DOXYLAMINE SUCCINATE	Documentary Standards Support	SM52020 Small Molecules 5

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 42(3)

Current DocID: GUID-CCB7BE4D-1C9C-48BE-B90C-8FAB34403D7D_3_en-US

DOI: https://doi.org/10.31003/USPNF_M28400_03_01

DOI ref: akd7r

b N,N-Dimethyl-2-(1-(1-oxidopyridin-2-yl)-1-phenylethoxy)ethan-1-amine oxide.

f Phenyl(pyridin-2-yl)methanone.