Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-Aug-2023
Document Type: USP Monographs
DocId: GUID-35F6AA7F-BAAA-487A-B778-7413957A9CA0_3_en-US
DOI: https://doi.org/10.31003/USPNF_M28220_03_01
DOI Ref: fv7ad

© 2025 USPC Do not distribute

Doxycycline

Change to read:

2-Naphthacenecarboxamide, 4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,5,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-, [4S- $(4\alpha,4a\alpha,5\alpha,5a\alpha,6\alpha,12a\alpha)$]-, monohydrate;

(4S,4aR,5S,5aR,6R,12aS)-4-(Dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,5,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-2-naphthacenecarboxamide monohydrate CAS RN[®]: 17086-28-1; UNII: N12000U130.

Anhydrous CAS RN®: 564-25-0; UNII: 334895S862.

DEFINITION

Doxycycline has a potency equivalent to NLT 880 μ g/mg and NMT 980 μ g/mg of doxycycline ($C_{22}H_{24}N_2O_8$).

IDENTIFICATION

- A. Spectroscopic Identification Tests (197), Infrared Spectroscopy: 197A
- B. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

• Procedure

Protect solutions containing doxycycline from light.

Solution A: Transfer 3.1 g of monobasic potassium phosphate and 0.5 g of edetate disodium to a 1000-mL volumetric flask. Add about 850 mL of water and 0.5 mL of triethylamine, and mix. Dilute with water to volume and adjust with 1 N sodium hydroxide to a pH of 8.5 ± 0.1.

Solution B: <u>Methanol</u> **Mobile phase:** See <u>Table 1</u>.

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	90	10
2.0	90	10
6.0	85	15
8.0	60	40
8.1	90	10
10.0	90	10

Diluent: 0.01 N hydrochloric acid

Standard solution: 0.1 mg/mL of <u>USP Doxycycline Monohydrate RS</u> in *Diluent*. Sonicate as needed to dissolve.

Sample solution: 0.1 mg/mL of Doxycycline in Diluent. Sonicate as needed to dissolve.

Chromatographic system

(See Chromatography (621), System Suitability.)

Detector: UV 270 nm

Column: 2.1-mm × 5-cm; 1.7-µm packing L7

Column temperature: 60° Flow rate: 0.6 mL/min Injection volume: 5 µL System suitability

Sample: Standard solution **Suitability requirements** Tailing factor: NMT 1.5

Relative standard deviation: NMT 1.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the quantity of doxycycline $(C_{22}H_{24}N_2O_8)$, in $\mu g/mg$, in the portion of Doxycycline taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times P$$

= peak response from the Sample solution

= peak response from the Standard solution

 C_S = concentration of <u>USP Doxycycline Monohydrate RS</u> in the Standard solution (mg/mL)

= concentration of Doxycycline in the Sample solution (mg/mL)

= potency of doxycycline in <u>USP Doxycycline Monohydrate RS</u> (μg/mg)

Acceptance criteria: 880-980 µg/mg

IMPURITIES

Change to read:

• ORGANIC IMPURITIES

Mobile phase, Diluent, and Chromatographic system: Proceed as directed in the Assay.

System suitability stock solution 1: 1 mg/mL each of USP Methacycline Hydrochloride RS and USP Doxycycline Related Compound A RS in Diluent

System suitability stock solution 2: 1.2 mg/mL of USP Doxycycline Hyclate RS in Diluent

System suitability solution: Transfer 5 mL of System suitability stock solution 2 to a 25-mL volumetric flask, heat on a steam bath for 60 min, and evaporate to dryness on a hot plate, taking care not to char the residue. Dissolve the residue in Diluent, add 0.5 mL of System suitability stock solution 1, and dilute with Diluent to volume. Pass the solution through a suitable filter and use the filtrate. This solution contains a mixture of 4-epidoxycycline, methacycline, doxycycline related compound A, and doxycycline. When stored in a refrigerator, this solution may be used for 14 days.

Sensitivity solution: 0.001 mg/mL of USP Doxycycline Monohydrate RS in Diluent

Standard solution: 0.002 mg/mL each of USP Doxycycline Monohydrate RS and USP Methacycline Hydrochloride RS in Diluent

Sample solution: 2 mg/mL of Doxycycline in Diluent. Sonicate as needed to dissolve.

System suitability

Samples: System suitability solution, Sensitivity solution, and Standard solution

Suitability requirements

Resolution: NLT 1.5 between methacycline and 4-epidoxycycline; NLT 1.5 between 4-epidoxycycline and doxycycline related compound A;

NLT 2.0 between doxycycline related compound A and doxycycline, System suitability solution

Relative standard deviation: NMT 5.0% each for the doxycycline and methacycline peaks, Standard solution

Signal-to-noise ratio: NLT 10, Sensitivity solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of methacycline in the portion of Doxycycline taken:

Result =
$$(r_{ij}/r_{e}) \times (C_{e}/C_{ij}) \times P \times F \times 100$$

= peak response of methacycline from the Sample solution

= peak response of methacycline from the Standard solution

= concentration of <u>USP Methacycline Hydrochloride RS</u> in the Standard solution (mg/mL)

= concentration of Doxycycline in the Sample solution (mg/mL)

P = potency of methacycline in <u>USP Methacycline Hydrochloride RS</u> (μg/mL)

F = conversion factor, 0.001 mg/μg

Calculate the percentage of 4-epidoxycycline, doxycycline related compound A, doxycycline related compound F, and any individual unspecified impurity in the portion of Doxycycline taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times P \times (F_{1}/F_{2}) \times 100$$

 r_{ij} = peak response of each impurity from the Sample solution

r_c = peak response of doxycycline from the Standard solution

C_s = concentration of <u>USP Doxycycline Monohydrate RS</u> in the *Standard solution* (mg/mL)

C₁₁ = concentration of Doxycycline in the Sample solution (mg/mL)

P = potency of doxycycline in <u>USP Doxycycline Monohydrate RS</u> (μg/mg)

 F_1 = conversion factor, 0.001 mg/ μ g

 F_2 = relative response factor (see <u>Table 2</u>)

Acceptance criteria: See <u>Table 2</u>. The reporting threshold is 0.05%.

Table 2

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Methacycline	0.51	1.0	2.0
4-Epidoxycycline ^a	0.60	1.0	0.5
Doxycycline related compound A (6-epidoxycycline)	0.72	0.67	2.0
Doxycycline	1.0	-	_
Doxycycline related compound Fb	1.20	0.66	1.0
Any individual unspecified impurity		1.0	0.10
Total impurities	-	-	2.5

^a (4R,4aR,5S,5aR,6R,12aS)-4-(Dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,5,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-2-naphthacenecarboxamide. Main degradation product.

SPECIFIC TESTS

• CRYSTALLINITY (695): Meets the requirements

• <u>P**H** (791)</u>

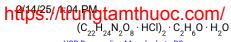
Sample solution: An aqueous suspension containing 10 mg/mL

Acceptance criteria: 5.0-6.5

• Water Determination (921), Method 1: 3.6%-4.6%

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in tight, light-resistant containers.


Change to read:

• USP REFERENCE STANDARDS (11)

USP Doxycycline Hyclate RS

2-Naphthacenecarboxamide, 4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,5,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-, monohydrochloride, compound with ethanol (2:1), monohydrate, $[4S-(4\alpha,4a\alpha,5\alpha,5a\alpha,6\alpha,12a\alpha)]$ -.

 $^{^{}f b}$ (4S,4aR,5S,5aR,6R,12aS)-2-Acetyl-4-(dimethylamino)-3,5,10,12,12a-pentahydroxy-6-methyl-4a,5a,6,12a-tetrahydrotetracene-1,11(4H,5H)-dione. $_{f b}$ (CN 1-Aug-2023)

USP Doxycycline Monohydrate RS

USP Doxycycline Related Compound A RS

[Note—May be available as a free base or a hydrochloride salt.]

(4S,4aR,5S,5aR,6S,12aS)-4-(Dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,5,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-2naphthacenecarboxamide.

1025.87

$$C_{22}H_{24}N_2O_8$$
 $\blacktriangle 444.44$

(4S,4aR,5S,5aR,6S,12aS)-4-(Dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,5,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-2-

naphthacenecarboxamide, hydrochloride. ▲ (CN 1-Aug-2023)

$$C_{22}H_{24}N_2O_8 \cdot HCI$$

(4S,4aR,5S,5aR,12aS)-4-(Dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,5,10,12,12a-pentahydroxy-6-methylene-1,11-dioxo-2naphthacenecarboxamide hydrochloride.

$${\rm C^{}_{22}H^{}_{22}N^{}_{2}O^{}_{8}\cdot HCI}$$

478.88

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
DOXYCYCLINE <u>Documentary Standards Support</u>		SM12020 Small Molecules 1

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 46(3)

Current DocID: GUID-35F6AA7F-BAAA-487A-B778-7413957A9CA0_3_en-US

DOI: https://doi.org/10.31003/USPNF_M28220_03_01

DOI ref: fv7ad