Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-May-2024
Document Type: USP Monographs
Docld: GUID-F2F8F379-32A6-431D-A217-105FDE9DAC07_5_en-US
DOI: https://doi.org/10.31003/USPNF_M28180_05_01
DOI Ref: v200r

© 2025 USPC Do not distribute

Doxorubicin Hydrochloride

 $C_{27}H_{29}NO_{11} \cdot HCI$ 579.98

5,12-Naphthacenedione, 10-[(3-amino-2,3,6-trideoxy- α - ι -lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(hydroxylacetyl)-1-methoxy-, hydrochloride (8S-cis)-;

 $(8S,10S)-10-[(3-Amino-2,3,6-trideoxy-\alpha-L-lyxo-hexopyranosyl)oxy]-8-glycoloyl-7,8,9,10-tetrahydro-6,8,11-trihydroxy-1-methoxy-5,12-naphthacenedione hydrochloride CAS RN[®]: 25316-40-9; UNII: 82F2G7BL4E.$

DECIMITION

Doxorubicin Hydrochloride contains NLT 98.0% and NMT 102.0% of doxorubicin hydrochloride (C₂₇H₂₉NO₁₁·HCl), calculated on the anhydrous,

[CAUTION—Great care should be taken to prevent inhaling particles of doxorubicin hydrochloride and exposing the skin to it.]

IDENTIFICATION

- A. The retention time of the doxorubicin peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.
- B. Spectroscopic Identification Tests (197), Infrared Spectroscopy: 197K
- C. Identification Tests—General, Chloride (191)

ASSAY

Change to read:

• Procedure

Solution A: 0.1% Trifluoroacetic acid prepared by transferring 1.0 mL of trifluoroacetic acid to 1 L of water

Solution B: Acetonitrile, methanol, and trifluoroacetic acid (800:200:1)

Mobile phase: See <u>Table 1</u>.

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	90	10
15	25	75
16	25	75
16.1	90	10
18	90	10

Diluent: Solution A and Solution B (50:50)

[Note—Protect solutions containing doxorubicin from light.]

System suitability solution: 0.1 mg/mL each of $\underline{\text{USP Doxorubicin Hydrochloride RS}}$ and $\underline{\text{MSP Epirubicin Hydrochloride RS}}$ (ERR 1-May-2024) in

Standard solution: 0.1 mg/mL of <u>USP Doxorubicin Hydrochloride RS</u> in *Diluent*

Sample solution: 0.1 mg/mL of Doxorubicin Hydrochloride in Diluent

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

Column: 2.1-mm × 10-cm; 1.7-µm packing L1

Temperatures
Column: 35°
Autosampler: 4°
Flow rate: 0.5 mL/min
Injection volume: 2 µL
System suitability

Samples: System suitability solution and Standard solution

[Note—The relative retention times for doxorubicin and epirubicin are 1.0 and 1.05, respectively.]

Suitability requirements

Resolution: NLT 1.5 between doxorubicin and epirubicin, System suitability solution

Tailing factor: 0.8-1.5, Standard solution

Relative standard deviation: NMT 0.73%, Standard solution

Analysis

Samples: Standard solution and Sample solution

 $Calculate \ the \ percentage \ of \ doxorubic in \ hydrochloride \ (C_{27}H_{29}NO_{11}\cdot HCI) \ in \ the \ portion \ of \ Doxorubic in \ Hydrochloride \ taken:$

Result =
$$(r_{\perp}/r_{c}) \times (C_{c}/C_{\perp}) \times P \times F \times 100$$

 r_{ij} = peak response of doxorubicin from the Sample solution

r_s = peak response of doxorubicin from the *Standard solution*

C_s = concentration of <u>USP Doxorubicin Hydrochloride RS</u> in the Standard solution (mg/mL)

C₁₁ = concentration of Doxorubicin Hydrochloride in the Sample solution (mg/mL)

P = potency of doxorubicin hydrochloride in <u>USP Doxorubicin Hydrochloride RS</u> (μg/mg)

 $F = \text{conversion factor, 0.001 mg/}\mu\text{g}$

Acceptance criteria: 98.0%-102.0% on the anhydrous, solvent-free basis

IMPURITIES

• ORGANIC IMPURITIES

Mobile phase, Diluent, System suitability solution, and Chromatographic system: Proceed as directed in the Assay.

[Note—Protect solutions containing doxorubicin from light.]

Standard solution: 0.002 mg/mL each of <u>USP Doxorubicin Hydrochloride RS</u>, <u>USP Doxorubicinone RS</u>, <u>USP Daunorubicin Hydrochloride RS</u>,

and USP Daunorubicinone RS in Diluent

Sample solution: 0.4 mg/mL of Doxorubicin Hydrochloride in Diluent

System suitability

Samples: System suitability solution and Standard solution [Note—See <u>Table 2</u> for the relative retention times.]

Suitability requirements

Resolution: NLT 1.5 between doxorubicin and epirubicin, System suitability solution

Relative standard deviation: NMT 5.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of doxorubicinone in the portion of Doxorubicin Hydrochloride taken:

Result =
$$(r_{ij}/r_{e}) \times (C_{e}/C_{ij}) \times P \times 100$$

 r_{ij} = peak response of doxorubicinone from the Sample solution

r_c = peak response of doxorubicinone from the Standard solution

C_s = concentration of USP Doxorubicinone RS in the Standard solution (mg/mL)

C₁₁ = concentration of Doxorubicin Hydrochloride in the Sample solution (mg/mL)

P = potency of doxorubicinone in the <u>USP Doxorubicinone RS</u> (mg/mg)

Calculate the percentage of daunorubicinone in the portion of Doxorubicin Hydrochloride taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times P \times 100$$

 r_{ij} = peak response of daunorubicinone from the Sample solution

r_s = peak response of daunorubicinone from the Standard solution

 $C_{_{\rm S}}$ = concentration of USP Daunorubicinone RS in the Standard solution (mg/mL)

C₁₁ = concentration of Doxorubicin Hydrochloride in the Sample solution (mg/mL)

P = potency of daunorubicinone in <u>USP Daunorubicinone RS</u> (mg/mg)

Calculate the percentage of daunorubicin in the portion of Doxorubicin Hydrochloride taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times P \times F \times 100$$

r₁₁ = peak response of daunorubicin from the *Sample solution*

 $r_{\rm s}$ = peak response of daunorubicin from the Standard solution

C_s = concentration of USP Daunorubicin Hydrochloride RS in the Standard solution (mg/mL)

C₁₁ = concentration of Doxorubicin Hydrochloride in the Sample solution (mg/mL)

P = potency of daunorubicin in <u>USP Daunorubicin Hydrochloride RS</u> (μg/mg)

 $F = \text{conversion factor, } 0.001 \text{ mg/}\mu\text{g}$

Calculate the percentage of any individual unspecified impurity in the portion of Doxorubicin Hydrochloride taken:

Result =
$$(r_{ij}/r_{s}) \times (C_{s}/C_{ij}) \times P \times F \times 100$$

 r_{ij} = peak response of any individual unspecified impurity from the Sample solution

 $r_{\rm s}$ = peak response of doxorubicin from the Standard solution

 C_s = concentration of <u>USP Doxorubicin Hydrochloride RS</u> in the *Standard solution* (mg/mL)

C₁₁ = concentration of Doxorubicin Hydrochloride in the Sample solution (mg/mL)

P = potency of doxorubicin hydrochloride in <u>USP Doxorubicin Hydrochloride RS</u> (μg/mg)

F = conversion factor, 0.001 mg/µg

Acceptance criteria: See Table 2.

Table 2

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Doxorubicin	1.0	_
Epirubicin ^a	1.05	_
Doxorubicinone ^b	1.08	0.5
Daunorubicin	1.23	0.5
Daunorubicinone [©]	1.35	0.5
Any individual unspecified	_	
impurity		0.5

https://trumqtamthuoc.com/

USP-NF Doxorubicin Hydrochloride

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Total impurities	_	2.0

^a For resolution measurement only. Not to be reported; not to be included in total impurities.

• LIMIT OF ACETONE AND ALCOHOL

Internal standard solution: 1 mg/mL of dioxane in water

Standard solution: 0.2 mg/mL of USP Acetone RS, 0.3 mg/mL of dehydrated alcohol in Internal standard solution

Sample solution: 200 mg of Doxorubicin Hydrochloride in 3.0 mL (3.0 g) of Internal standard solution

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: GC

Detector: Flame ionization

Column: 4-mm × 2-m; packed with 8%-10% liquid phase G16 and 2% potassium hydroxide on 100- to 120-mesh support S1A

Column temperature: 60° Carrier gas: Helium

[Note-Adjust the column temperature and carrier gas flow rate so that dioxane elutes in about 6 min.]

Injection volume: 1 µL

Flow rate: Adjust the column temperature and carrier gas flow rate so that dioxane elutes in about 6 min.

System suitability

Sample: Standard solution

[Note—The relative retention times for acetone, alcohol, and dioxane are about 0.2, 0.5, and 1.0, respectively.]

Suitability requirements

Resolution: NLT 2.0 between adjacent peaks **Tailing factor:** NMT 1.5 for the alcohol peak

Relative standard deviation: NMT 4.0% for the peak response ratios of acetone and alcohol to the internal standard

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage, by weight, of acetone and alcohol respectively, in the portion of Doxorubicin Hydrochloride taken:

Result =
$$(R_{I}/R_{c}) \times (C_{A}/C_{D}) \times (D_{I}/W_{I}) \times 100$$

R₁₁ = peak response ratio of the analyte (acetone or alcohol) to dioxane from the Sample solution

R_c = peak response ratio of the analyte (acetone or alcohol) to dioxane from the Standard solution

C_A = concentration of the analyte (acetone or alcohol) in the Standard solution (mg/mL)

 C_D = concentration of dioxane in the Standard solution (mg/mL)

 D_{ij} = weight of dioxane in the Sample solution (mg)

 W_U = weight of Doxorubicin Hydrochloride in the Sample solution (mg)

Acceptance criteria

Acetone: NMT 0.5%

Total of acetone and alcohol: NMT 2.5%

SPECIFIC TESTS

• CRYSTALLINITY (695): Meets the requirements, except where it is labeled as amorphous, most particles do not exhibit birefringence and extinction positions

• **pH** (791)

Sample solution: 5 mg/mL **Acceptance criteria:** 4.0-5.5

• Water Determination, Method I (921): NMT 4.0%

ADDITIONAL REQUIREMENTS

- Packaging and Storage: Preserve in tight containers, and store at controlled room temperature except where it is labeled as amorphous, in which case it should be stored in the freezer.
- LABELING: The amorphous form is so labeled.

 $^{^{}b} \ \ (8S,10S)\text{-}6,8,10,11\text{-}Tetrahydoxy-8-(hydroxyacetyl)-1-methoxy-7,8,9,10-tetrahydrotetracene-5,12-dione.}$

c (8S,10S)-8-Acetyl-6,8,10,11-tetrahydroxy-1-methoxy-7,8,9,10-tetrahydrotetracene-5,12-dione.

https://trungtamthuoc.com/

• USP REFERENCE STANDARDS (11)

USP Acetone RS

USP Daunorubicin Hydrochloride RS

USP Daunorubicinone RS

(8S,10S) - 8 - Acetyl - 6,8,10,11 - tetra hydroxy - 1 - methoxy - 7,8,9,10 - tetra hydrotetra cene - 5,12 - dione.

 $C_{21}H_{18}O_{8}$ 398.36

USP Doxorubicin Hydrochloride RS

USP Doxorubicinone RS

(8S,10S)-6,8,10,11-Tetrahydroxy-8-(hydroxyacetyl)-1-methoxy-7,8,9,10-tetrahydrotetracene-5,12-dione.

 $C_{21}H_{18}O_{9}$ 414.3

USP Epirubicin Hydrochloride RS

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
DOXORUBICIN HYDROCHLORIDE	Documentary Standards Support	SM12020 Small Molecules 1

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 40(3)

Current DocID: GUID-F2F8F379-32A6-431D-A217-105FDE9DAC07_5_en-US

DOI: https://doi.org/10.31003/USPNF_M28180_05_01

DOI ref: v200r