Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-Nov-2022
Document Type: USP Monographs
Docld: GUID-41785247-DA22-407F-B060-7182FDA4FD3A_4_en-US
DOI: https://doi.org/10.31003/USPNF_M28190_04_01
DOI Ref: vsu52

© 2025 USPC Do not distribute

Doxorubicin Hydrochloride for Injection

DEFINITION

Doxorubicin Hydrochloride for Injection is a sterile mixture of Doxorubicin Hydrochloride and Lactose. It contains NLT 90.0% and NMT 115.0% of the labeled amount of doxorubicin hydrochloride ($C_{27}H_{29}NO_{11} \cdot HCI$).

[CAUTION—Great care should be taken to prevent inhaling particles of Doxorubicin Hydrochloride and exposing the skin to it.]

IDENTIFICATION

- A. The retention time of the doxorubicin peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.
- B. The UV spectrum of the doxorubicin peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

Change to read:

PROCEDURE

Solution A: 0.1% Trifluoroacetic acid prepared by diluting 1.0 mL of trifluoroacetic acid with water to 1 L

Solution B: Acetonitrile, methanol, and trifluoroacetic acid (800:200:1)

Mobile phase: See <u>Table 1</u>.

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	90	10
15	25	75
16	25	75
16.1	90	10
18	90	10

Diluent: Solution A and Solution B (50:50)

[Note—Protect solutions containing doxorubicin from light.]

 $\textbf{System suitability solution:} \ 0.1 \ \text{mg/mL each of} \ \underline{\textbf{USP Doxorubicin Hydrochloride RS}} \ \text{and} \ \underline{\textbf{USP Epirubicin Hydrochloride RS}} \ \text{in } \ \underline{\textbf{Diluent}}$

Standard solution: 0.1 mg/mL of USP Doxorubicin Hydrochloride RS in Diluent

Sample solution: Nominally 0.1 mg/mL of doxorubicin hydrochloride in *Diluent* from Doxorubicin Hydrochloride for Injection prepared as follows. Add 5 mL of *Diluent* into the container of Doxorubicin Hydrochloride for Injection, and transfer the contents to a volumetric flask of appropriate size. Rinse the container with additional *Diluent* NLT 3 times. Dilute with *Diluent* to volume, and mix.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm. For *Identification* test *B*, use a photo-diode array detector in the range of 190–400 nm.

Column: 2.1-mm \times 10-cm; 1.7- μ m packing L1

Temperatures
Autosampler: 4°
Column: 35°
Flow rate: 0.5 mL/min
Injection volume: 2 µL

System suitability

Samples: System suitability solution and Standard solution

[Note—The relative retention times for doxorubicin and epirubicin are 1.0 and 1.05, respectively.]

Suitability requirements

Resolution: NLT 1.5 between doxorubicin and epirubicin, System suitability solution

Tailing factor: 0.8-1.5, Standard solution

Relative standard deviation: NMT 0.73%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of doxorubicin hydrochloride ($C_{27}H_{29}NO_{11}\cdot HCI$) in the portion of Doxorubicin Hydrochloride for Injection taken:

Result =
$$(r_{ij}/r_{s}) \times (C_{s}/C_{ij}) \times P \times F \times 100$$

 r_{ij} = peak response of doxorubicin from the Sample solution

r_s = peak response of doxorubicin from the Standard solution

 $C_{_{\rm S}}~={
m concentration}~{
m of}~{
m \underline{USP}}~{
m Doxorubicin}~{
m Hydrochloride}~{
m RS}~{
m in}~{
m the}~{
m Standard}~{
m solution}~{
m (mg/mL)}$

C₁₁ = nominal concentration of doxorubicin hydrochloride in the Sample solution (mg/mL)

P = potency of doxorubicin Ahydrochloride (ERR 1-Nov-2022) in <u>USP Doxorubicin Hydrochloride RS</u> (μg/mg)

F = conversion factor, 0.001 mg/µg

Acceptance criteria: 90.0%-115.0%

IMPURITIES

Change to read:

• ORGANIC IMPURITIES

Mobile phase, Diluent, System suitability solution, and Chromatographic system: Proceed as directed in the Assay.

[Note—Protect solutions containing doxorubicin from light.]

Standard solution: 0.002 mg/mL each of <u>USP Doxorubicin Hydrochloride RS</u>, <u>USP Doxorubicinone RS</u>, and <u>USP Daunorubicinone RS</u> in *Diluent* Sample solution: Nominally 0.4 mg/mL of doxorubicin hydrochloride in *Diluent* from Doxorubicin Hydrochloride for Injection prepared as follows. Add 5 mL of *Diluent* into the container of Doxorubicin Hydrochloride for Injection, and transfer the contents to a volumetric flask of appropriate size. Rinse the container with additional *Diluent* NLT 3 times. Dilute with *Diluent* to volume, and mix.

System suitability

Samples: System suitability solution and Standard solution

[Note—See <u>Table 2</u> for the relative retention times.]

Suitability requirements

Resolution: NLT 1.5 between doxorubicin and epirubicin, System suitability solution

Relative standard deviation: NMT 5.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of doxorubicinone in the portion of Doxorubicin Hydrochloride for Injection taken:

Result =
$$(r_{ij}/r_{e}) \times (C_{e}/C_{ij}) \times P \times 100$$

 r_{ij} = peak response of doxorubicinone from the Sample solution

 $r_{\rm s}$ = peak response of doxorubicinone from the Standard solution

C_s = concentration of <u>USP Doxorubicinone RS</u> in the Standard solution (mg/mL)

 C_{ij} = nominal concentration of doxorubicin hydrochloride in the Sample solution (mg/mL)

P = potency of doxorubicinone in <u>USP Doxorubicinone RS</u> (mg/mg)

Calculate the percentage of daunorubicinone in the portion of Doxorubicin Hydrochloride for Injection taken:

Result =
$$(r_{ij}/r_c) \times (C_c/C_{ij}) \times P \times 100$$

 r_{ij} = peak response of daunorubicinone from the Sample solution

r_s = peak response of daunorubicinone from the *Standard solution*

 C_S = concentration of <u>USP Daunorubicinone RS</u> in the *Standard solution* (mg/mL)

C, = nominal concentration of doxorubicin hydrochloride in the Sample solution (mg/mL)

P = potency of daunorubicinone in <u>USP Daunorubicinone RS</u> (mg/mg)

Calculate the percentage of any individual unspecified degradation product in the portion of Doxorubicin Hydrochloride for Injection taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times P \times F \times 100$$

r, = peak response of each unspecified degradation product from the Sample solution

 $r_{\rm s}$ = peak response of doxorubicin from the Standard solution

C_o = concentration of <u>USP Doxorubicin Hydrochloride RS</u> in the Standard solution (mg/mL)

C₁₁ = nominal concentration of doxorubicin hydrochloride in the Sample solution (mg/mL)

P = potency of doxorubicin Ahydrochloride (ERR 1-Nov-2022) in USP Doxorubicin Hydrochloride RS (μg/mg)

 $F = \text{conversion factor, 0.001 mg/}\mu\text{g}$

Acceptance criteria: See <u>Table 2</u>.

Table 2

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Doxorubicin	1.0	_
Epirubicin ^a	1.05	_
Doxorubicinone ^b	1.08	0.5
Daunorubicinone ^C	1.35	0.5
Any individual unspecified degradation product	-	0.5
Total impurities	-	2.0

^a For resolution measurement only. Not to be reported; not to be included in total impurities.

SPECIFIC TESTS

- Constituted Solution: At the time of use, it meets the requirements in <u>Injections and Implanted Drug Products (1), Specific Tests, Completeness and clarity of solutions</u>.
- <u>Sterility Tests (71)</u>: It meets the requirements when tested as directed in <u>Test for Sterility of the Product to Be Examined, Membrane Filtration</u>, the entire contents of all the containers being collected aseptically with the aid of 200 mL of *Fluid A* before filtering.
- Water Determination, Method I(921)

Sample solution: Prepare as directed for a hygroscopic specimen.

Acceptance criteria: NMT 4.0%

• <u>PH (791)</u>

Sample solution: Constitute as directed in the labeling using water as the diluent.

Acceptance criteria: 4.5-6.5

• BACTERIAL ENDOTOXINS TEST (85)

Sample solution: 1.1 mg/mL of doxorubicin hydrochloride from Doxorubicin Hydrochloride for Injection

Acceptance criteria: NMT 2.2 USP Endotoxin Units/mg of doxorubicin hydrochloride

- UNIFORMITY OF DOSAGE UNITS (905): Meets the requirements
- LABELING (7), LABELS AND LABELING FOR INJECTABLE PRODUCTS: Meets the requirements.

 $^{^{}b} \quad \text{(8S,10S)-6,8,10,11-Tetrahydroxy-8-(hydroxyacetyl)-1-methoxy-7,8,9,10-tetrahydrotetracene-5,12-dione.} \\$

^c (8S,10S)-8-Acetyl-6,8,10,11-tetrahydroxy-1-methoxy-7,8,9,10-tetrahydrotetracene-5,12-dione.

https://trungtamthuoc.com/

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve as described in <u>Packaging and Storage Requirements (659)</u>, <u>Injection Packaging, Packaging for constitution</u>, except that multiple-dose containers may provide for the withdrawal of NMT 100 mL when constituted as directed in the labeling. Store unreconstituted vials at controlled room temperature. Protect from light.

• USP REFERENCE STANDARDS (11)

USP Daunorubicinone RS

(8S,10S)-8-Acetyl-6,8,10,11-tetra hydroxy-1-methoxy-7,8,9,10-tetra hydrotetra cene-5,12-dione.

C₂₁H₁₈O₈ 398.36

USP Doxorubicin Hydrochloride RS

USP Doxorubicinone RS

(8S,10S)-6,8,10,11-Tetrahydroxy-8-(hydroxyacetyl)-1-methoxy-7,8,9,10-tetrahydrotetracene-5,12-dione.

 $C_{21}H_{18}O_9$ 414.36

USP Epirubicin Hydrochloride RS

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
DOXORUBICIN HYDROCHLORIDE FOR INJECTION	Documentary Standards Support	SM12020 Small Molecules 1

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 40(4)

Current DocID: GUID-41785247-DA22-407F-B060-7182FDA4FD3A_4_en-US

DOI: https://doi.org/10.31003/USPNF_M28190_04_01

DOI ref: vsu52