
Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-May-2021
Document Type: USP Monographs
DocId: GUID-0FF9FC89-E0D0-47AF-8455-E8D6BDB83B34_7_en-US
DOI: https://doi.org/10.31003/USPNF_M28110_07_01
DOI Ref: i3h9j

© 2025 USPC Do not distribute

Doxepin Hydrochloride

C₁₉H₂₁NO · HCl 315.84

1-Propanamine, 3-dibenz[b,e]oxepin-11(6H)ylidene-N,N- dimethyl-, hydrochloride;

N,N-Dimethyldibenz[b,e]oxepin- Δ^{11} -(6H)- γ -propylamine hydrochloride CAS RN[®]: 1229-29-4; UNII: 3U9A0FE9N5.

(E)-isomer CAS RN®: 4698-39-9; UNII: CU61C5RH24. (Z)-isomer CAS RN®: 25127-31-5; UNII: XI27WMG8QK.

DEFINITION

Doxepin Hydrochloride, an (E) and (Z) geometric isomer mixture, contains the equivalent of NLT 98.0% and NMT 102.0% of doxepin hydrochloride ($C_{19}H_{21}NO \cdot HCI$), calculated on the dried basis. It contains NLT 13.6% and NMT 18.1% of the (Z)-isomer, and NLT 81.4% and NMT 88.2% of the (E)-isomer.

IDENTIFICATION

Change to read:

• A. Spectroscopic Identification Tests (197), Infrared Spectroscopy: 197K ◆or 197A (USP 1-May-2021)

Change to read:

• **B.** The retention \triangle times of the major peaks for the (*E*)- and (*Z*)-isomers of the *Sample solution* correspond to those \triangle (USP 1-May-2021) of the *Standard solution*, as obtained in the *Assay*.

Change to read:

• C. IDENTIFICATION TESTS—GENERAL (191), Chemical Identification Tests, Chloride

Diluent: Alcohol and water (50:50)

Sample solution: 10 mg/mL of Doxepin Hydrochloride in Diluent

Acceptance criteria: Meets the requirements of ▲the test for amine hydrochlorides ▲ (USP 1-May-2021)

ASSAY

Change to read:

• PROCEDURE

▲Solution A: 27.6 g/L of monobasic sodium phosphate in water (USP 1-May-2021)

Mobile phase: Methanol and ASolution A (30:70). (USP 1-May-2021) Adjust with Adjusted phosphoric acid (USP 1-May-2021) to a pH of 2.5.

Standard solution: 0.1 mg/mL of USP Doxepin Hydrochloride RS in Mobile phase

Sample solution: 0.1 mg/mL of Doxepin Hydrochloride in Mobile phase. Sonication may be used to aid in dissolution.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

Column: 4-mm × 12.5-cm; $^{\blacktriangle}$ 5- μ m $_{\blacktriangle}$ (USP 1-May-2021) packing $\underline{L7}$

Column temperature: 50° Flow rate: 1 mL/min Injection volume: 20 µL

ARun time: NLT 2 times the retention time of the (E)-isomer (USP 1-May-2021)

System suitability

Sample: Standard solution

▲[Note—The relative retention times for the (E)- and (Z)-isomers are 1.0 and 1.1, respectively.] $_{\blacktriangle}$ (USP 1-May-2021)

Suitability requirements

Resolution: NLT 1.5 between the (*E*)- and (*Z*)-isomers

Tailing factor: NMT 2.0 \triangle each for (USP 1-May-2021) the (E)- and (Z)-isomers

Relative standard deviation: NMT 2.0% ≜each for the (E)- and (Z)-isomers (USP 1-May-2021)

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of doxepin hydrochloride (C₁₀H₂₁NO · HCl) in the portion of Doxepin Hydrochloride taken:

Result =
$$[(r_{U(Z)} + r_{U(E)})/(r_{S(Z)} + r_{S(E)})] \times (C_S/C_U) \times 100$$

 $r_{_{U(Z)}}$ = peak response of the (Z)-isomer from the Sample solution

 $r_{u(c)}$ = peak response of the (E)-isomer from the Sample solution

 $r_{S(Z)}$ = peak response of the (Z)-isomer from the Standard solution

 $r_{S(E)}$ = peak response of the (E)-isomer from the Standard solution

C_s = concentration of <u>USP Doxepin Hydrochloride RS</u> in the *Standard solution* (mg/mL)

 C_{II} = concentration of Doxepin Hydrochloride in the Sample solution (mg/mL)

Calculate the percentage of the (Z)-isomer of doxepin hydrochloride ($C_{19}H_{21}NO \cdot HCI$) in the portion of Doxepin Hydrochloride taken:

Result =
$$(r_{U(Z)}/r_{S(Z)}) \times (C_S/C_U) \times 100$$

 $r_{_{{
m U}\!({
m Z})}}$ = peak response of the (Z)-isomer from the Sample solution

)

 $r_{S(Z)}$ = peak response of the (Z)-isomer from the Standard solution

C_S = concentration of the (Z)-isomer in the Standard solution (mg/mL) based on the labeled percentage of the (Z)-isomer in USP

Doxepin Hydrochloride RS

C₁₁ = concentration of Doxepin Hydrochloride in the Sample solution (mg/mL)

Calculate the percentage of the (E)-isomer of doxepin hydrochloride ($C_{19}H_{21}NO \cdot HCI$) in the portion of Doxepin Hydrochloride taken:

Result =
$$(r_{U(E)}/r_{S(E)}) \times (C_S/C_U) \times 100$$

 $r_{U(E)}$ = peak response of the (E)-isomer from the Sample solution

)

 $r_{S(E)}$ = peak response of the (E)-isomer from the Standard solution

C_S = concentration of the (E)-isomer in the Standard solution (mg/mL) based on the labeled percentage of the (E)-isomer in <u>USP</u>

<u>Doxepin Hydrochloride RS</u>

 $C_{_U}$ = concentration of Doxepin Hydrochloride in the Sample solution (mg/mL)

Acceptance criteria

Doxepin hydrochloride: 98.0%–102.0% on the dried basis (*Z*)-Isomer of doxepin hydrochloride: 13.6%–18.1% (*E*)-Isomer of doxepin hydrochloride: 81.4%–88.2%

IMPURITIES

• Residue on Ignition (281): NMT 0.2%

Change to read:

ORGANIC IMPURITIES

[Note—This procedure is not intended to resolve the (E)- and (Z)-isomers of doxepin hydrochloride. Minor variations in *Mobile phase* composition could result in a shoulder in the trailing edge of doxepin. In cases where there may be separation, both the (E)- and (Z)-isomers should be used in the appropriate calculation.]

Solution A: [♠]Transfer 1 mL of <u>phosphoric acid</u> to a 10-mL volumetric flask containing about 5 mL of <u>water</u>. Cool and dilute with <u>water</u> to volume. ♠ (USP 1-May-2021)

Buffer: 1.42 g/L of dibasic sodium phosphate, adjusted with Solution A to a pH of 7.7

hftp/៩፻//tr፡ያስgtamthuoc.com/

Mobile phase: Methanol, acetonitrile, and Buffer (50:20:30)

Diluent: ▲To each liter of *Mobile phase* add 2 mL of 2 N sodium hydroxide TS. ▲ (USP 1-May-2021)

Standard solution: 0.001 mg/mL each of <u>USP Doxepin Hydrochloride RS</u>, <u>USP Doxepin Related Compound A RS</u>, and <u>USP Doxepin Related Compound B RS</u>; and 0.002 mg/mL of <u>USP Doxepin Related Compound C RS</u> in *Diluent*. Sonication for about 1 min may be used to aid the initial dissolution of the compounds.

Sensitivity solution: 0.0005 mg/mL each of <u>USP Doxepin Hydrochloride RS</u>, <u>USP Doxepin Related Compound A RS</u>, and <u>USP Doxepin Related Compound B RS</u>; and 0.001 mg/mL of <u>USP Doxepin Related Compound C RS</u> from *Standard solution* in *Diluent* (USP 1-May-2021)

Sample solution: 1 mg/mL of Doxepin Hydrochloride in Diluent

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 215 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Column temperature: 30° Flow rate: 1 mL/min Injection volume: 20 µL

Run time: 2.2 times the retention time of doxepin

System suitability

Samples: Standard solution ▲ and Sensitivity solution ▲ (USP 1-May-2021)

[Note—See <u>Table 1</u> for relative retention times. The doxepin related compound C peak will be the largest peak in the Standard solution

chromatogram.]

Suitability requirements

Resolution: NLT 1.5 between doxepin related compound A and doxepin related compound C; NLT 1.5 between doxepin related compound C and doxepin related compound B, ▲ Standard solution

Relative standard deviation: NMT 5.0% for doxepin, Standard solution ▲ (USP 1-May-2021)

Signal-to-noise ratio: NLT 10 for [▲]doxepin, doxepin related compound A, doxepin related compound B, and doxepin related compound C, Sensitivity solution _{▲ (USP 1-Mav-2021)}

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each doxepin related compound in the portion of Doxepin Hydrochloride taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times 100$$

 r_{ii} = peak response of doxepin related compound A, B, or C from the Sample solution

 $r_{\rm s}$ = peak response of doxepin related compound A, B, or C from the Standard solution

C_S = concentration of <u>USP Doxepin Related Compound A RS</u>, <u>USP Doxepin Related Compound B RS</u>, or <u>USP Doxepin Related Compound C RS</u> in the <u>Standard solution</u> (mg/mL)

C₁₁ = concentration of Doxepin Hydrochloride in the Sample solution (mg/mL)

Calculate the percentage of each unspecified impurity in the portion of Doxepin Hydrochloride taken:

Result =
$$(r_{IJ}/r_{S}) \times (C_{S}/C_{IJ}) \times 100$$

 r_U = peak response of each unspecified \triangle impurity $_{\triangle}$ (USP 1-May-2021) from the Sample solution

 $r_{\rm S}$ = peak response of doxepin [sum of (E)- and (Z)-isomers] from the Standard solution

C_s = concentration of <u>USP Doxepin Hydrochloride RS</u> in the Standard solution (mg/mL)

 $C_{_{II}}$ = concentration of Doxepin Hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: See <u>Table 1</u>. Disregard any peak with a relative retention time less than 0.25. ≜The reporting threshold is 0.05%. (USP 1-May-2021)

https://trunthuoc.com/

USP-NF Doxepin Hydrochloride

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Doxepin related compound A	0.48	0.10
Doxepin related compound C	0.55	0.20
Doxepin related compound B	0.63	0.10
Doxepin	1.0	-
Any individual, unspecified impurity	-	0.10
▲Total impurities	-	0.50 _{▲ (USP 1-May-2021)}

SPECIFIC TESTS

• Loss on Drying (731)

Analysis: Dry under vacuum at 60° for 3 h.

Acceptance criteria: NMT 0.5%

ADDITIONAL REQUIREMENTS

• Packaging and Storage: Preserve in well-closed containers.

Change to read:

• USP REFERENCE STANDARDS (11)

USP Doxepin Hydrochloride RS

USP Doxepin Related Compound A RS

Dibenzo[b,e]oxepin-11(6H)-one.

 ${
m C}_{14}{
m H}_{10}{
m O}_2$ 210.23 <u>USP Doxepin Related Compound B RS</u>

 $^{\blacktriangle}(11RS)_{\blacktriangle}~_{(USP~1-May-2021)}~-(3-(Dimethylamino)propyl)-6,11-dihydrodibenzo[\emph{b},e] oxepin-11-ol.$

 $C_{19}H_{23}NO_2$ 297.3 <u>USP Doxepin Related Compound C RS</u>

 $\triangleq \text{(EZ)}_{ \triangleq \text{(USP 1-May-}2021)} - 3 - \text{(Dibenzo[}b,e] \text{oxepin-}11(6H) - \text{ylidene)} - N - \text{methylpropan-}1 - \text{amine hydrochloride}.$

C₁₈H₁₉NO · HCl 301.8

 $\textbf{Auxiliary Information} \cdot \textbf{Please} \ \underline{\textbf{check for your question in the FAQs}} \ \textbf{before contacting USP.}$

Topic/Question	Contact	Expert Committee
DOXEPIN HYDROCHLORIDE	Documentary Standards Support	SM42020 Small Molecules 4

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 45(2)

Current DocID: GUID-0FF9FC89-E0D0-47AF-8455-E8D6BDB83B34_7_en-US

DOI: https://doi.org/10.31003/USPNF_M28110_07_01

DOI ref: i3h9j