Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-Aug-2021
Document Type: USP Monographs
DocId: GUID-268712D6-20EB-4F60-A2DB-40AA99276242_5_en-US
DOI: https://doi.org/10.31003/USPNF_M28035_05_01
DOI Ref: h7103

© 2025 USPC Do not distribute

Dorzolamide Hydrochloride

C₁₀H₁₆N₂O₄S₃·HCl 360.90

4H-Thieno[2,3-b]thiopyran-2-sulfonamide, 4-(ethylamino)-5,6-dihydro-6-methyl-, 7,7-dioxide, monohydrochloride, (4S-trans)-;

(4S,6S)-4-(Ethylamino)-5,6-dihydro-6-methyl-4*H*-thieno[2,3-*b*]thiopyran-2-sulfonamide 7,7-dioxide, monohydrochloride CAS RN[®]: 130693-82-2; UNII: QZO5366EW7.

DEFINITION

Dorzolamide Hydrochloride contains NLT 99.0% and NMT 101.0% of dorzolamide hydrochloride ($C_{10}H_{16}N_2O_4S_3 \cdot HCI$), calculated on the anhydrous basis.

IDENTIFICATION

- A. Spectroscopic Identification Tests (197), Infrared Spectroscopy: 197M
- B. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.
- C. IDENTIFICATION TESTS—GENERAL, Chloride (191)

ASSAY

• PROCEDURE

Buffer: 3.7 g/L of monobasic potassium phosphate in water

Solution A: Acetonitrile and Buffer (6.5:94)

Solution B: Acetonitrile **Mobile phase:** See <u>Table 1</u>.

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	100	0
15	100	0
30	50	50
37	100	0
44	100	0

Standard solution: 0.6 mg/mL of USP Dorzolamide Hydrochloride RS in Solution A

Sample solution: 0.6 mg/mL of Dorzolamide Hydrochloride in Solution A

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 25-cm; packing L1

Column temperature: 35° Flow rate: 1.5 mL/min

2/14/25, 12:53 PM

Injection volume: $10~\mu L$

System suitability

Sample: Standard solution **Suitability requirements**

Column efficiency: NLT 6500 theoretical plates

Tailing factor: 0.6-1.2

Relative standard deviation: NMT 1.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of dorzolamide hydrochloride (C_{1n}H₁₆N₂O₄S₂ · HCl) in the portion of Dorzolamide Hydrochloride taken:

Result =
$$(r_{I}/r_{S}) \times (C_{S}/C_{II}) \times 100$$

 r_{ij} = peak area of the Sample solution

 $r_{\rm s}$ = peak area of the Standard solution

C_s = concentration of <u>USP Dorzolamide Hydrochloride RS</u> in the Standard solution (mg/mL)

C₁₁ = concentration of Dorzolamide Hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: 99.0%-101.0% on the anhydrous basis

IMPURITIES

• RESIDUE ON IGNITION (281): NMT 0.1%, an ignition temperature of 600° being used

• ORGANIC IMPURITIES

Solution A, Solution B, Mobile phase, Sample solution, Chromatographic system, and System suitability: Proceed as directed in the *Assay*.

Analysis

Sample: Sample solution

Calculate the percentage of each individual impurity in the portion of Dorzolamide Hydrochloride taken:

Result =
$$(r_{t}/r_{\tau}) \times 100$$

r₁₁ = peak area of each individual impurity from the Sample solution

 r_{τ} = sum of all the peak areas from the Sample solution

Acceptance criteria

Any individual impurity: NMT 0.1% Total impurities: NMT 0.5%

• LIMIT OF DORZOLAMIDE HYDROCHLORIDE RELATED COMPOUND A

Mobile phase: tert-Butyl methyl ether, chromatographic n-heptane, acetonitrile, and water (63:35:2:0.2)

System suitability solution: Transfer 18 mg of USP Dorzolamide Hydrochloride RS and 2 mg of USP Dorzolamide Hydrochloride Related Compound A RS, each, to a 15-mL centrifuge tube. Dissolve in 4 mL of 0.5 N ammonium hydroxide, and add 4 mL of ethyl acetate. Separate the ethyl acetate layer, and transfer to a 15-mL centrifuge tube. Add 4 mL of ethyl acetate to the aqueous layer, and mix. Separate the ethyl acetate layer, and combine it with the first extract. Evaporate the combined organic layers to dryness on a water bath maintained at 50° under a stream of nitrogen. Dissolve the residue in 3 mL of acetonitrile, add 3 drops of (S)-(-)-α-methylbenzyl isocyanate (discard the reagent if it is colored), and allow to react for 5 min on a water bath maintained at 50°. Evaporate the mixture to dryness on a water bath maintained at 50° under a stream of nitrogen. Dissolve the residue in 10 mL of a mixture of *tert*-butyl methyl ether, glacial acetic acid, and acetonitrile (87:10:3).

Sample solution: Transfer 20 mg of Dorzolamide Hydrochloride to a 15-mL centrifuge tube, dissolve in 4 mL of 0.5 N ammonium hydroxide, and add 4 mL of ethyl acetate. Separate the ethyl acetate layer, and transfer to a 15-mL centrifuge tube. Add 4 mL of ethyl acetate to the aqueous layer, and mix. Separate the ethyl acetate layer, and combine it with the first extract. Evaporate the combined organic layers to dryness on a water bath maintained at 50° under a stream of nitrogen. Dissolve the residue in 3 mL of acetonitrile, add 3 drops of (S)-(-)-α-methylbenzyl isocyanate (discard the reagent if it is colored), and allow to react for 5 min on a water bath maintained at 50°. Evaporate the mixture to dryness on a water bath maintained at 50° under a stream of nitrogen. Dissolve the residue in 10 mL of a mixture of tert-butyl methyl ether, glacial acetic acid, and acetonitrile (87:10:3).

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 25-cm; packing L3

Flow rate: 2 mL/min Injection volume: 10 µL

System suitability

Sample: System suitability solution

[Note—The relative retention times for dorzolamide and dorzolamide hydrochloride related compound A are about 1.0 and 1.5, respectively.]

Suitability requirements

Resolution: NLT 4.0 between dorzolamide and dorzolamide hydrochloride related compound A **Column efficiency:** NLT 4000 theoretical plates for the dorzolamide hydrochloride peak

Tailing factor: NMT 1.4

Analysis

Samples: System suitability solution and Sample solution

Calculate the percentage of dorzolamide hydrochloride related compound A in the portion of Dorzolamide Hydrochloride taken:

Result =
$$[r/(r_i + r_c)] \times 100$$

r_i = peak area of dorzolamide hydrochloride related compound A from the Sample solution

 $r_{\rm s}$ = peak area of dorzolamide hydrochloride from the Sample solution

Acceptance criteria: NMT 0.5%

SPECIFIC TESTS

• Water Determination, Method I (921)

Sample: 0.4 g

Acceptance criteria: NMT 0.5%

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in well-closed containers, protected from light, and store at 15°-30°.

Change to read:

• USP Reference Standards $\langle 11 \rangle$

USP Dorzolamide Hydrochloride RS

USP Dorzolamide Hydrochloride Related Compound A RS

(4R,6R)-4-(Ethylamino)-5,6-dihydro-6-methyl-4H-thieno[2,3-b]thiopyran-2-sulfonamide-7,7- dioxide, monohydrochloride.

$$C_{10}H_{16}N_2O_4S_3 \cdot HCI$$
 $\triangleq 360.89_{\triangleq (ERR 1-Aug-2021)}$

 $\textbf{Auxiliary Information} \cdot \textbf{Please} \ \underline{\textbf{check for your question in the FAQs}} \ \textbf{before contacting USP.}$

Topic/Question	Contact	Expert Committee
DORZOLAMIDE HYDROCHLORIDE	Documentary Standards Support	SM32020 Small Molecules 3

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 31(2)

Current DocID: GUID-268712D6-20EB-4F60-A2DB-40AA99276242_5_en-US

DOI: https://doi.org/10.31003/USPNF_M28035_05_01

DOI ref: <u>h71o3</u>