Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-609C294C-FE08-40A3-AB04-6CB4136B5EC5\_5\_en-US
DOI: https://doi.org/10.31003/USPNF\_M2648\_05\_01
DOI Ref: iyd32

© 2025 USPC Do not distribute

# **Donepezil Hydrochloride Tablets**

To view the Notice from the Expert Committee that posted in conjunction with this accelerated revision, please click <a href="https://www.uspnf.com/rb/donepazil-hcl-tabs-20200424">https://www.uspnf.com/rb/donepazil-hcl-tabs-20200424</a>.

# **DEFINITION**

Donepezil Hydrochloride Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of donepezil hydrochloride ( $C_{2a}H_{2a}NO_3 \cdot HCI$ ).

#### **IDENTIFICATION**

# Change to read:

• A. Spectroscopic Identification Tests (197), Ultraviolet-Visible Spectroscopy: 197U<sub>▲ (CN 1-May-2020)</sub>

Wavelength range: 220-360 nm

**Sample solution:** Crush a suitable number of Tablets, and transfer an amount of powder, equivalent to 10 mg of donepezil hydrochloride, to a 100-mL volumetric flask. Add 80 mL of <u>0.1 N hydrochloric acid VS</u>, and sonicate for 5 min. Cool the solution to room temperature, and dilute with <u>0.1 N hydrochloric acid VS</u> to volume. Transfer a portion of this solution to a centrifuge tube, and centrifuge for 15 min. Transfer 5 mL of the clear supernatant to a 25-mL volumetric flask, and dilute with <u>0.1 N hydrochloric acid VS</u> to volume.

Analysis: Using a 1-cm cell, record the UV spectrum of the Sample solution.

Acceptance criteria: The solution exhibits absorption maxima at 230, 271, and 315 nm.

• B. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

#### **ASSAY**

• PROCEDURE

Diluent: Methanol and 0.1 N hydrochloric acid VS (75:25)

**Mobile phase:** Dissolve 2.5 g of <u>sodium 1-decanesulfonate</u> in 650 mL of <u>water</u>, and add 1.0 mL of <u>perchloric acid</u> and 350 mL of <u>acetonitrile</u>. If necessary, adjust with an additional 0.5 mL of <u>perchloric acid</u> to a pH of about 1.8.

System suitability solution: 0.2 mg/mL of <u>USP Donepezil Hydrochloride RS</u> and 0.008 mg/mL of <u>USP Donepezil Related Compound A RS</u>. [Note—Dissolve in 40% of the flask volume of <u>methanol</u>, swirl, and dilute with <u>water</u> to volume.]

**Standard solution:** 0.4 mg/mL of <u>USP Donepezil Hydrochloride RS</u> in *Diluent*. [Note—Dissolve in 60% of the flask volume of *Diluent*, swirl, and dilute with *Diluent* to volume.]

Sample solution: Nominally 0.4 mg/mL of donepezil hydrochloride prepared as follows. Dissolve a suitable number of Tablets in 75% of the flask volume of *Diluent*, and sonicate in an ultrasonic bath for 20 min. Swirl the mixture for 30 s, allow to cool to room temperature, and dilute with *Diluent* to volume. [Note—If necessary, add a magnetic stirring bar to the flask, and mix for 10 min on the magnetic stirrer, to aid in dissolution.] Allow a few min for the solids to settle. Pass through a suitable filter, discarding the first 2–3 mL of the filtrate.

# **Chromatographic system**

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 271 nm

Column: 4.6-mm × 15-cm; 5-µm packing L1

Column temperature: 35° Flow rate: 1.4 mL/min Injection volume: 20 µL

**System suitability** 

Samples: System suitability solution and Standard solution

[Note—The relative retention times for donepezil related compound A and donepezil are about 0.92 and 1.0, respectively.]

**Suitability requirements** 

Resolution: NLT 1.5 between donepezil related compound A and donepezil, System suitability solution

Tailing factor: NMT 1.5 for the donepezil peak, System suitability solution

Relative standard deviation: NMT 2.0%, Standard solution

# Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of donepezil hydrochloride ( $C_{24}H_{29}NO_3 \cdot HCI$ ) in the portion of Tablets taken:

 $r_{ii}$  = peak response of donepezil hydrochloride from the Sample solution

 $r_{\rm s}$  = peak response of donepezil hydrochloride from the Standard solution

 $C_s$  = concentration of <u>USP Donepezil Hydrochloride RS</u> in the Standard solution (mg/mL)

 $C_{ij}$  = nominal concentration of donepezil hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: 90.0%-110.0%

#### **PERFORMANCE TESTS**

#### Change to read:

• **D**ISSOLUTION (711)

Test 1

Medium: 0.1 N hydrochloric acid VS; 900 mL

**Apparatus 2:** 50 rpm **Time:** 30 min

**Analytical procedure:** Determine the amount of donepezil hydrochloride ( $C_{24}H_{29}NO_3 \cdot HCI$ ) dissolved, by using one of the following methods.

# **Chromatographic method**

Diluent: Methanol and 0.1 N hydrochloric acid VS (75:25)

Mobile phase: Acetonitrile, water, and perchloric acid (35: 65: 0.1)

Standard stock solution A: 1.1 mg/mL of USP Donepezil Hydrochloride RS in Diluent

Standard stock solution B: 0.11 mg/mL of <u>USP Donepezil Hydrochloride RS</u> from Standard stock solution A in Medium

**Standard solution:** (L/1000) mg/mL of <u>USP Donepezil Hydrochloride RS</u> from *Standard stock solution B* in *Medium*, where L is the label claim in mg/Tablet

**Sample solution:** Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size, discarding the first few mL of the filtrate.

#### **Chromatographic system**

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 271 nm

Column: 4.6-mm × 15-cm; 5-µm packing L1

Column temperature: 35° Flow rate: 1.0 mL/min Injection volume: 50 µL System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 1.5

**Column efficiency:** NLT 5000 theoretical plates **Relative standard deviation:** NMT 2.0%

#### **Analysis**

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of donepezil hydrochloride (C<sub>24</sub>H<sub>20</sub>NO<sub>3</sub>·HCl) dissolved:

Result = 
$$(r_{t}/r_{s}) \times (C_{s}/L) \times V \times 100$$

 $r_{ij}$  = peak response from the Sample solution

 $r_s$  = peak response from the Standard solution

C<sub>s</sub> = concentration of the Standard solution (mg/mL)

L = label claim (mg/Tablet)

V = volume of Medium, 900 mL

# **Spectrometric method**

Standard stock solution: 0.11 mg/mL of <u>USP Donepezil Hydrochloride RS</u> in <u>water</u>

**Standard solution:** (L/900) mg/mL of <u>USP Donepezil Hydrochloride RS</u> from the *Standard stock solution* in *Medium*, where L is the label claim in mg/Tablet

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size.

# Instrumental conditions

(See <u>Ultraviolet-Visible Spectroscopy (857)</u>.)

Mode: UV

Analytical wavelength: 230 nm

Blank: Medium

Calculate the percentage of the labeled amount of donepezil hydrochloride ( $C_{24}H_{29}NO_3 \cdot HCI$ ) dissolved:

Result = 
$$(A_u/A_s) \times (C_s/L) \times V \times 100$$

 $A_{ii}$  = absorbance of the Sample solution

 $A_s$  = absorbance of the Standard solution

C<sub>s</sub> = concentration of the Standard solution (mg/mL)

L = label claim (mg/Tablet)

V = volume of Medium, 900 mL

**Tolerances:** NLT 80% (Q) of the labeled amount of donepezil hydrochloride is dissolved.

#### For Tablets which contain 23 mg of donepezil hydrochloride

Test 2: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 2.

Medium: pH 6.8 phosphate buffer; 900 mL

**Apparatus 2:** 50 rpm **Times:** 1, 3, and 8 h

Buffer: 5.0 g/L of monobasic ammonium phosphate in water adjusted with phosphoric acid to a pH of 2.3

Mobile phase: Acetonitrile and Buffer (25:75)

Standard stock solution: 0.26 mg/mL of USP Donepezil Hydrochloride RS prepared as follows. Transfer a suitable quantity of USP

<u>Donepezil Hydrochloride RS</u> to an appropriate volumetric flask. Add 70% of the flask volume of *Medium*. Sonicate to dissolve and dilute with *Medium* to volume.

**Standard solution:** (L/900) mg/mL of <u>USP Donepezil Hydrochloride RS</u> from *Standard stock solution* in *Medium*, where L is the label claim in mg/Tablet. Pass the solution through a suitable filter, discarding the first 3 mL of the filtrate.

Sample solution: Pass a portion of the solution under test through a suitable filter, discarding the first 3 mL of the filtrate.

# **Chromatographic system**

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 15-cm; 5-µm packing L1

Column temperature: 35° Flow rate: 1.5 mL/min Injection volume: 50 µL

Run time: NLT 1.7 times the retention time of donepezil

**System suitability** 

Sample: Standard solution Suitability requirements Tailing factor: NMT 1.5

Relative standard deviation: NMT 2.0%

**Analysis** 

Samples: Standard solution and Sample solution

Calculate the concentration ( $C_{j}$ ) of donepezil hydrochloride ( $C_{24}H_{29}NO_{3} \cdot HCI$ ) in the sample withdrawn from the vessel at each time point (i):

$$\mathsf{Result}_{_{i}} = (r_{_{U}}/r_{_{S}}) \times C_{_{S}}$$

 $r_{ij}$  = peak response of donepezil from the Sample solution

 $r_s$  = peak response of donepezil from the Standard solution

C<sub>s</sub> = concentration of <u>USP Donepezil Hydrochloride RS</u> in the Standard solution (mg/mL)

Calculate the percentage of the labeled amount of donepezil hydrochloride  $(C_{24}H_{29}NO_3 \cdot HCI)$  dissolved at each time point (i):

$$Result_1 = C_1 \times V \times (1/L) \times 100$$

Result<sub>2</sub> = {
$$[C_2 \times (V - V_S)] + [C_1 \times V_S]$$
} × (1/L) × 100

Result<sub>3</sub> = 
$$({C_3 \times [V - (2 \times V_5)]}) + [(C_2 + C_1) \times V_5]) \times (1/L) \times 100$$

C<sub>i</sub> = concentration of donepezil hydrochloride in the portion of the sample withdrawn at the specified time point (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

V<sub>s</sub> = volume of the Sample solution withdrawn at each time point (mL)

Tolerances: See <u>Table 1</u>.

Table 1

| Time Point<br>(i) | Time<br>(h) | Amount Dissolved<br>(%) |
|-------------------|-------------|-------------------------|
| 1                 | 1           | NMT 20                  |
| 2                 | 3           | 35-60                   |
| 3                 | 8           | NLT 80                  |

The percentages of the labeled amount of donepezil hydrochloride ( $C_{24}H_{29}NO_3 \cdot HCI$ ) dissolved at the times specified conform to

Dissolution (711), Acceptance Table 2.

Test 3: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 3.

Medium: pH 6.8 phosphate buffer; 900 mL

**Apparatus 2:** 50 rpm **Times:** 1, 3, and 10 h

Standard stock solution: 0.25 mg/mL of <u>USP Donepezil Hydrochloride RS</u> prepared as follows. Transfer a suitable quantity of <u>USP Donepezil Hydrochloride RS</u> to an appropriate volumetric flask. Add 70% of the flask volume of <u>water</u>. Sonicate to dissolve and allow to cool to room temperature. Dilute with <u>water</u> to volume.

**Standard solution:** (L/900) mg/mL of <u>USP Donepezil Hydrochloride RS</u> from *Standard stock solution* in *Medium*, where L is the label claim in mg/Tablet

Sample solution: Pass a portion of the solution under test through a suitable filter.

# Instrumental conditions

(See <u>Ultraviolet-Visible Spectroscopy (857)</u>.)

Mode: UV-Vis

Analytical wavelength: 315 nm

Blank: Medium

System suitability

Sample: Standard solution
Suitability requirements

Relative standard deviation: NMT 2.0%

#### **Analysis**

Samples: Standard solution and Sample solution

Calculate the concentration ( $C_{j}$ ) of donepezil hydrochloride ( $C_{24}H_{29}NO_{3}\cdot HCI$ ) in the sample withdrawn from the vessel at each time point (i):

Result, = 
$$(A_1/A_s) \times C_s$$

 $A_{ij}$  = absorbance of donepezil from the Sample solution

 $A_s$  = absorbance of donepezil from the Standard solution

C<sub>s</sub> = concentration of <u>USP Donepezil Hydrochloride RS</u> in the Standard solution (mg/mL)

Calculate the percentage of the labeled amount of donepezil hydrochloride ( $C_{24}H_{29}NO_3 \cdot HCI$ ) dissolved at each time point (i):

$$Result_1 = C_1 \times V \times (1/L) \times 100$$

Result<sub>2</sub> = {
$$[C_2 \times (V - V_S)] + [C_1 \times V_S]$$
} × (1/L) × 100

Result<sub>3</sub> = 
$$({C_3 \times [V - (2 \times V_S)]} + [(C_2 + C_1) \times V_S]) \times (1/L) \times 100$$

 $C_i$  = concentration of donepezil hydrochloride in the portion of the sample withdrawn at the specified time point (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

V<sub>s</sub> = volume of the Sample solution withdrawn at each time point (mL)

Tolerances: See Table 2.

#### Table 2

| Time Point (i) | Time<br>(h) | Amount Dissolved<br>(%) |
|----------------|-------------|-------------------------|
| 1              | 1           | 10-30                   |
| 2              | 3           | 33-53                   |
| 3              | 10          | NLT 80                  |

The percentages of the labeled amount of donepezil hydrochloride (C<sub>24</sub>H<sub>29</sub>NO<sub>3</sub>·HCl) dissolved at the times specified conform to <u>Dissolution (711), Acceptance Table 2</u>.

Test 4: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 4.

**Medium:** 0.05 M sodium phosphate buffer, pH 6.8 [0.1 N hydrochloric acid VS and 76 g/L of tribasic sodium phosphate (25:75) adjusted with 2 N hydrochloric acid TS or 2 N sodium hydroxide TS to a pH of 6.8]; 900 mL, degassed

Apparatus 2: 50 rpm, with sinkers; see Dissolution (711), Figure 2a.

Times: 1, 3, and 8 h

**Buffer:** 1.36 g/L of monobasic potassium phosphate prepared as follows. To each 1 L of 1.36 g/L of monobasic potassium phosphate in water, add 3 mL of triethylamine and adjust with phosphoric acid to a pH of 2.8.

**Mobile phase:** Methanol and Buffer (47:53) **Diluent:** Methanol and water (50:50)

Standard stock solution: 0.53 mg/mL of USP Donepezil Hydrochloride RS in Diluent

Standard solution: 0.027 mg/mL of USP Donepezil Hydrochloride RS from Standard stock solution in Medium

**Sample solution:** Pass a portion of the solution under test through a suitable filter. Replace the portion removed with the same volume of *Medium*.

# **Chromatographic system**

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 268 nm

Column: 4.6-mm × 15-cm; 5-µm packing L7

Flow rate: 1.3 mL/min Injection volume: 20 µL

Run time: NLT 1.7 times the retention time of donepezil

System suitability

Sample: Standard solution Suitability requirements Tailing factor: NMT 1.5

Relative standard deviation: NMT 1.0%

**Analysis** 

Samples: Standard solution and Sample solution

Calculate the concentration ( $C_{j}$ ) of donepezil hydrochloride ( $C_{24}H_{29}NO_{3}\cdot HCI$ ) in the sample withdrawn from the vessel at each time point (i):

Result<sub>i</sub> = 
$$(r_U/r_S) \times C_S$$

 $r_{ij}$  = peak response of donepezil from the Sample solution

 $r_{\rm s}$  = peak response of donepezil from the Standard solution

C<sub>s</sub> = concentration of <u>USP Donepezil Hydrochloride RS</u> in the Standard solution (mg/mL)

Calculate the percentage of the labeled amount of donepezil hydrochloride ( $C_{24}H_{29}NO_3 \cdot HCI$ ) dissolved at each time point (i):

Result<sub>1</sub> = 
$$C_1 \times V \times (1/L) \times 100$$

Result<sub>2</sub> = 
$$[(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

Result<sub>3</sub> = 
$$\{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

 $C_i$  = concentration of donepezil hydrochloride in the portion of the sample withdrawn at time point i (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

V<sub>s</sub> = volume of *Sample solution* withdrawn at each time point and replaced with *Medium* (mL)

Tolerances: See <u>Table 3</u>.

Table 3

| Time Point (i) | Time<br>(h) | Amount Dissolved<br>(%) |
|----------------|-------------|-------------------------|
| 1              | 1           | 10-30                   |
| 2              | 3           | 40-60                   |
| 3              | 8           | NLT 80                  |

The percentages of the labeled amount of donepezil hydrochloride ( $C_{24}H_{29}NO_3 \cdot HCI$ ) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>.

▲Test 5: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 5.

**Medium:** 0.05 M potassium phosphate buffer (6.8 g/L of monobasic potassium phosphate and 0.9 g/L of sodium hydroxide in water adjusted with dilute phosphoric acid in water or dilute sodium hydroxide in water to a pH of 6.80); 900 mL

Apparatus 2: 50 rpm, with suitable sinkers

Times: 1, 3, and 9 h

Buffer: 6.8 g/L of monobasic potassium phosphate in water; adjusted with phosphoric acid to a pH of 3.0

Mobile phase: Methanol and Buffer (40:60)

Diluent: Methanol and water (50:50)

Standard stock solution: 0.5 mg/mL of <u>USP Donepezil Hydrochloride RS</u> prepared as follows. Transfer a suitable amount of <u>USP Donepezil Hydrochloride RS</u> to an appropriate volumetric flask and dissolve in 50% of the flask volume of *Diluent*. Sonicate for NLT 1 min to promote dissolution then dilute with *Diluent* to volume.

**Standard solution:** 0.025 mg/mL of <u>USP Donepezil Hydrochloride RS</u> from Standard stock solution in Medium

Sample solution: Pass a portion of the solution under test through a suitable filter discarding the first NLT 3 mL of filtrate.

# **Chromatographic system**

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 271 nm

Column: 4.6-mm × 15-cm; 5-µm packing L1

Column temperature: 30° Flow rate: 1 mL/min Injection volume: 50 µL

Run time: NLT 1.5 times the retention time of donepezil

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration ( $C_i$ ) of donepezil hydrochloride ( $C_{24}H_{29}NO_3 \cdot HCI$ ) in the sample withdrawn from the vessel at each time point (i):

Result<sub>i</sub> = 
$$(r_U/r_S) \times C_S$$

r, = peak response of donepezil from the Sample solution

 $r_{\rm s}$  = peak response of donepezil from the Standard solution

 $C_s$  = concentration of <u>USP Donepezil Hydrochloride RS</u> in the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of donepezil hydrochloride  $(C_{24}H_{29}NO_3 \cdot HCI)$  dissolved at each time point (i):

Result<sub>1</sub> = 
$$C_1 \times V \times (1/L) \times 100$$

Result<sub>2</sub> = {
$$[C_2 \times (V - V_S)] + [C_1 \times V_S]$$
} × (1/L) × 100

Result<sub>3</sub> = 
$$({C_3 \times [V - (2 \times V_2)]}) + [(C_2 + C_1) \times V_2]) \times (1/L) \times 100$$

C, = concentration of donepezil hydrochloride in the portion of the sample withdrawn at the specified time point (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

V<sub>s</sub> = volume of the Sample solution withdrawn at each time point (mL)

Tolerances: See <u>Table 4</u>.

Table 4

| Time Point (i) | Time<br>(h) | Amount Dissolved<br>(%) |
|----------------|-------------|-------------------------|
| 1              | 1           | 15-35                   |
| 2              | 3           | 40-60                   |
| 3              | 9           | NLT 80                  |

The percentages of the labeled amount of donepezil hydrochloride (C<sub>24</sub>H<sub>29</sub>NO<sub>3</sub>·HCI) dissolved at the times specified conform to <u>Dissolution (711)</u>, <u>Acceptance Table 2</u>. ▲ (RB 1-May-2020)

• UNIFORMITY OF DOSAGE UNITS (905): Meet the requirements

#### **IMPURITIES**

#### Change to read:

# • ORGANIC IMPURITIES, PROCEDURE 1

[Note—On the basis of the synthetic route, perform either *Procedure 1* or *Procedure 2*. *Procedure 2* is recommended if any of the impurities included in  $\triangleq$  Table  $T_{\triangleq}$  (RB 1-May-2020) are potential degradation products.]

Diluent, Mobile phase, System suitability solution, Sample solution, and Chromatographic system: Proceed as directed in the Assay.

Standard solution: 0.0008 mg/mL of USP Donepezil Hydrochloride RS in Diluent

## System suitability

Samples: System suitability solution and Standard solution

[Note—The relative retention times for donepezil related compound A and donepezil are about 0.92 and 1.0, respectively.]

#### **Suitability requirements**

Resolution: NLT 1.5 between donepezil related compound A and donepezil, System suitability solution

Relative standard deviation: NMT 8.0%, Standard solution

# **Analysis**

Samples: Standard solution and Sample solution

[Note-Identify the impurities using the relative retention times given in  $^{\blacktriangle}$  Table  $5_{\blacktriangle}$  (RB-1-May-2020).

Calculate the percentage of any individual impurity in the portion of Tablets taken:

Result = 
$$(r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

 $r_{ij}$  = peak response of each individual impurity from the Sample solution

 $r_s$  = peak response of donepezil hydrochloride from the Standard solution

 $C_{\rm s}$  = concentration of <u>USP Donepezil Hydrochloride RS</u> in the Standard solution (mg/mL)

 $C_{_U}$  = nominal concentration of donepezil hydrochloride in the Sample solution (mg/mL)

F = relative response factor (see <sup>▲</sup><u>Table 5</u>)<sub>▲ (RB 1-May-2020)</sub>

Acceptance criteria: See ▲ Table 5.

**Table 5** (RB 1-May-2020)

| Name                                           | Relative<br>Retention<br>Time | Relative<br>Response<br>Factor | Acceptance<br>Criteria,<br>NMT (%) |
|------------------------------------------------|-------------------------------|--------------------------------|------------------------------------|
| Desbenzyl donepezil <sup>a</sup>               | 0.33                          | 1.0                            | 0.5                                |
| Donepezil open ring <sup>b</sup>               | 0.70                          | 0.6                            | 0.5                                |
| Donepezil hydrochloride                        | 1.0                           | -                              | _                                  |
| Donepezil <i>N</i> -oxide <sup>©</sup>         | 1.2                           | 1.0                            | 0.5                                |
| Any individual unspecified degradation product | _                             | -                              | 0.2                                |

<sup>&</sup>lt;sup>a</sup> 5,6-Dimethoxy-2-(piperidin-4-ylmethyl)indan-1-one.

#### Change to read:

• ORGANIC IMPURITIES, PROCEDURE 2

Diluent: Acetonitrile and water (25:75)

Solution A: Add 1 mL of phosphoric acid in 1 L of water. Adjust with triethylamine to a pH of 6.5. Pass through a filter of 0.45-µm or finer pore

size.

Solution B: <u>Acetonitrile</u>

Mobile phase: See <u>Aable 6.</u>

**Table 6** (RB 1-May-2020)

| Time<br>(min) | Solution A (%) | Solution B<br>(%) |
|---------------|----------------|-------------------|
| 0             | 75             | 25                |
| 10            | 40             | 60                |
| 40            | 40             | 60                |
| 41            | 75             | 25                |
| 50            | 75             | 25                |

**Standard solution:** 0.01 mg/mL of <u>USP Donepezil Hydrochloride RS</u> in *Diluent*. Sonication may be used to aid the dissolution. **Sample solution:** Nominally 1.0 mg/mL of donepezil hydrochloride in *Diluent*. Sonication may be used to aid the dissolution.

# **Chromatographic system**

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 286 nm

**Column:** 4.6-mm  $\times$  25-cm; 5- $\mu$ m packing <u>L1</u>

Column temperature: 50° Flow rate: 1.5 mL/min Injection volume: 20 μL System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 1.5

Relative standard deviation: NMT 2.0%, for five replicate injections

**Analysis** 

Samples: Standard solution and Sample solution

<sup>&</sup>lt;sup>b</sup> 2-(3-(1-Benzylpiperidin-4-yl)-2-oxopropyl)-4,5-dimethoxybenzoic acid.

<sup>&</sup>lt;sup>c</sup> 2-[(1-Benzylpiperidin-4-yl)methyl]-5,6-dimethoxyindan-1-one *N*-oxide.

Calculate the percentage of each specified impurity or any individual degradation product in the portion of Tablets taken:

Result = 
$$(r_{1}/r_{2}) \times (C_{2}/C_{1}) \times (1/F) \times 100$$

 $r_{ij}$  = peak response of each individual impurity from the Sample solution

 $r_s$  = peak response of donepezil hydrochloride from the Standard solution

C<sub>s</sub> = concentration of <u>USP Donepezil Hydrochloride RS</u> in the *Standard solution* (mg/mL)

C<sub>11</sub> = nominal concentration of donepezil hydrochloride in the Sample solution (mg/mL)

F = relative response factor for the corresponding impurity peak from  $\frac{A_{Table 7}}{A_{RB 1-May-2020}}$ 

# Acceptance criteria: See <u>Arable 7</u>.

**Table 7 △** (RB 1-May-2020)

| Name                                        | Relative<br>Retention<br>Time <sup>a</sup> | Relative<br>Response<br>Factor | Acceptance<br>Criteria,<br>NMT (%) |
|---------------------------------------------|--------------------------------------------|--------------------------------|------------------------------------|
| Desbenzyl donepezil <sup>b</sup>            | 0.23                                       | 1.5                            | 0.15                               |
| Donepezil pyridine analog <sup>©</sup>      | 0.49                                       | 1.9                            | 0.15                               |
| Donepezil quaternary salt <sup>d</sup>      | 0.68                                       | 0.74                           | 0.15                               |
| Donepezil hydrochloride                     | 1.0                                        | 1.0                            | -                                  |
| Donepezil indene analog <sup><u>e</u></sup> | 1.7                                        | 2.2                            | 0.15                               |
| Deoxydonepezil <sup><u>f</u></sup>          | 2.1                                        | 1.3                            | 0.15                               |
| Any individual degradation product          | (C                                         | 1.0                            | 0.1                                |
| Total degradation products                  | <i>^</i>                                   | _                              | 1.0                                |

<sup>&</sup>lt;sup>a</sup> Relative retention times are based on 1-mL gradient delay volume.

# **ADDITIONAL REQUIREMENTS**

- Packaging and Storage: Preserve in well-closed containers. Store at controlled room temperature.
- LABELING: If a test for *Organic Impurities* other than *Procedure 1* is used, the labeling states the test with which the article complies. If a test for *Dissolution* other than *Test 1* is used, the labeling states the test with which the article complies.
- USP Reference Standards (11)

USP Donepezil Hydrochloride RS

USP Donepezil Related Compound A RS

(E)-2-[(1-Benzylpiperidin-4-yl)methylene]-5,6-dimeth oxyindan-1-one.

C<sub>24</sub>H<sub>27</sub>NO<sub>3</sub> 377.48

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

| Topic/Question                  | Contact                       | Expert Committee          |  |
|---------------------------------|-------------------------------|---------------------------|--|
| DONEPEZIL HYDROCHLORIDE TABLETS | Documentary Standards Support | SM42020 Small Molecules 4 |  |

<sup>&</sup>lt;sup>b</sup> 5,6-Dimethoxy-2-(piperidin-4-ylmethyl)indan-1-one.

<sup>&</sup>lt;sup>c</sup> 5,6-Dimethoxy-2-(pyridin-4-ylmethyl)indan-1-one; also known as DPMI.

d 1,1-Dibenzyl-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]piperidinium; also known as donepezil benzyl.

<sup>&</sup>lt;sup>e</sup> 1-Benzyl-4-[(5,6-dimethoxyinden-2-yl)methyl]piperidine; also known as dehydrodeoxy donepezil.

f 1-Benzyl-4-[(5,6-dimethoxyindan-2-yl)methyl]piperidine.

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 48(5)

Current DocID: GUID-609C294C-FE08-40A3-AB04-6CB4136B5EC5\_5\_en-US

DOI: https://doi.org/10.31003/USPNF\_M2648\_05\_01

DOI ref: iyd32

