Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-Oct-2023
Document Type: USP Monographs
Docid: GUID-47FA16EB-6878-49ED-8C49-88118A50AC43_8_en-US

DOI: https://doi.org/10.31003/USPNF_M826_08_01

DOI Ref: 17b5c

© 2025 USPC Do not distribute

Divalproex Sodium Extended-Release Tablets

DEFINITION

Divalproex Sodium Extended-Release Tablets contain an amount of divalproex sodium equivalent to NLT 90.0% and NMT 110.0% of the labeled amount of valproic acid ($C_aH_{16}O_2$).

IDENTIFICATION

- A. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.
- B. The UV spectrum of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer: 0.5 g/L of anhydrous citric acid and 0.4 g/L of anhydrous dibasic sodium phosphate in water

Mobile phase: Methanol and Buffer (55:45). Adjust with diluted sodium hydroxide or phosphoric acid to a pH of 5.0.

Diluent: Buffer, adjusted with phosphoric acid to a pH of 2.0

Standard stock solution: 2.5 mg/mL of USP Valproic Acid RS in methanol

Standard solution: 1.0 mg/mL of <u>USP Valproic Acid RS</u> from the Standard stock solution in Diluent

Sample stock solution: Nominally 2.5 mg/mL of valproic acid prepared as follows. Transfer an amount of powder (from NLT 20 Tablets) to a suitable volumetric flask. Dissolve in 50% of the flask volume of <u>methanol</u> by shaking for 1 h. Dilute with <u>methanol</u> to volume, pass through a suitable filter, and use the filtrate.

Sample solution: Nominally 1.0 mg/mL of valproic acid from the Sample stock solution in Diluent

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm. For *Identification B*, use a diode array detector in the range of 190–400 nm.

Column: 3.9-mm × 15-cm; 4-µm packing L11

Flow rate: 0.7 mL/min Injection volume: 20 µL

Run time: NLT 2 times the retention time of valproic acid

System suitability

Sample: Standard solution **Suitability requirements**

Tailing factor: NMT 2.0 for valproic acid

Relative standard deviation: NMT 2.0% for valproic acid

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of valproic acid (C_oH₁₆O₂) in the portion of Tablets taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times 100$$

 r_u = peak response from the Sample solution

 $r_{\rm s}$ = peak response from the Standard solution

 C_S = concentration of <u>USP Valproic Acid RS</u> in the Standard solution (mg/mL)

C, = nominal concentration of valproic acid in the Sample solution (mg/mL)

Acceptance criteria: 90.0%-110.0% of valproic acid

PERFORMANCE TESTS

Change to read:

• Dissolution (711)

Test 1

Acid stage medium: 0.1 N hydrochloric acid; 500 mL

Buffer stage medium: 21.6 g/L of <u>sodium dodecyl sulfate</u>, 6.9 g/L of <u>monobasic sodium phosphate</u>, and 0.12 g/L of <u>sodium hydroxide</u> in <u>water</u>. Adjust with diluted <u>sodium hydroxide</u> or diluted <u>phosphoric acid</u> to a pH of 5.5; 900 mL

Apparatus 2: 100 rpm, with three-prong sinkers only for 250-mg Tablets, if necessary **Times:** 45 min in the *Acid stage medium*; 3, 9, 12, and 24 h in the *Buffer stage medium*

Procedure: After 45 min in the *Acid stage medium*, withdraw a sample from the solution, and immediately filter. Replace the *Acid stage medium* with the *Buffer stage medium*, and run the test for the times specified.

Buffer: 1.42 g/L of dibasic sodium phosphate in 0.008 M acetic acid TS. Adjust with phosphoric acid to a pH of 2.5.

Mobile phase: Methanol and Buffer (65:35)

Standard stock solution: 2.5 mg/mL of USP Valproic Acid RS in methanol

Standard solution: 0.15 mg/mL of <u>USP Valproic Acid RS</u> from the *Standard stock solution* in the *Buffer stage medium*. [Note—Add 40% of the flask volume of <u>methanol</u> before diluting with *Buffer stage medium* to volume.]

Sample solution: Pass a portion of the solution under test through a suitable filter of 20-µm pore size. Use the *Sample solution* from the *Acid stage medium* as is. Dilute the *Sample solution* from the *Buffer stage medium* with methanol by a factor of 2.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 3.9-mm × 15-cm; 10-µm packing L11

Column temperature: 30° Flow rate: 1 mL/min Injection volume: 80 µL

Run time: NLT 1.5 times the retention time of valproic acid

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.5

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution, Sample solution from the Acid stage medium, and Sample solution from the Buffer stage medium Calculate the percentage of the labeled amount of valproic acid ($C_0H_{16}O_2$) dissolved in the Acid stage medium:

Result =
$$(r_U/r_S) \times C_S \times V \times (1/L) \times 100$$

 r_{ij} = peak response from the Sample solution

 $r_{\rm s}$ = peak response from the Standard solution

 C_s = concentration of <u>USP Valproic Acid RS</u> in the Standard solution (mg/mL)

V = volume of the Acid stage medium, 500 mL

L = label claim (mg/Tablet)

Calculate the concentration (C_i) of valproic acid ($C_8H_{16}O_2$) in the sample withdrawn from the vessel at each time point i during the *Buffer stage*:

Result, =
$$(r_i/r_s) \times C_s \times D$$

 r_i = peak response from the Sample solution at time point i

 $r_{\rm s}$ = peak response from the Standard solution

C_s = concentration of <u>USP Valproic Acid RS</u> in the Standard solution (mg/mL)

D = dilution factor of the Sample solution in the Buffer stage medium, 2

Calculate the percentage of the labeled amount of valproic acid ($C_gH_{16}O_2$) dissolved at each time point i during the Buffer stage:

$$Result_1 = C_1 \times V \times (1/L) \times 100$$

Result₂ = {
$$[C_2 \times (V - V_S)] + (C_1 \times V_S)$$
} × (1/L) × 100

Result₃ =
$$({C_3 \times [V - (2 \times V_S)]}) + [(C_2 + C_1) \times V_S]) \times (1/L) \times 100$$

Result₄ =
$$({C_4 \times [V - (3 \times V_S)]}) + [({C_3 + C_2 + C_1}) \times V_S]) \times (1/L) \times 100$$

 C_i = concentration of valproic acid in the Sample solution withdrawn at time point i (mg/mL)

V = volume of the Buffer stage medium, 900 mL

L = label claim (mg/Tablet)

V_o = volume of the Sample solution withdrawn at each time point i during the Buffer stage (mL)

Tolerances

Acid stage: NMT 10% of the labeled amount of valproic acid $(C_0H_{16}O_2)$ is dissolved.

Buffer stage: See Table 1.

Table 1

Time Point (i)	Time (h)	Amount Dissolved, Tablets labeled to contain 500 mg of valproic acid (%)	Amount Dissolved, Tablets labeled to contain 250 mg of valproic acid (%)
1	3	10-30	10-30
2	9	35-55	35-60
3	12	45-70	45-75
4	24	NLT 75	NLT 75

The percentage of the labeled amount of valproic acid ($C_8H_{16}O_2$) dissolved at the times specified conform to <u>Dissolution (711)</u>,

Acceptance Table 2.

Test 2: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 2.

Acid stage medium: 0.1 N hydrochloric acid; 500 mL

Buffer stage concentrate: 15.53 g/L of monobasic sodium phosphate, 5.45 g/L of sodium hydroxide, and 48.7 g/L of sodium lauryl sulfate in water (final pH approximately 11); 400 mL

Buffer stage medium: Mix 400 mL of *Buffer stage concentrate* with 500 mL of *Acid stage medium* to a pH of 5.5 ± 0.05. [Note—If necessary, adjust the pH of *Buffer stage concentrate* with 1 N hydrochloric acid or 1 N sodium hydroxide to ensure that the final pH of the mixture of media is 5.5.] Retain this solution to dilute the solutions prepared later.

Apparatus 2: 100 rpm, with wire helix sinkers

Times: 45 min in the *Acid stage medium*; 3, 9, 12, and 21 h in the *Buffer stage medium*. The times in the *Buffer stage medium* include the time in the *Acid stage medium*.

Procedure: After 45 min in the *Acid stage medium*, stop and lift the paddles from the vessels. Do not perform an analysis of the *Acid stage medium*. Transfer 400 mL of *Buffer stage concentrate* to the vessels containing the *Acid stage medium*, and run the test for the times specified.

Buffer: 3.5 g/L of monobasic sodium phosphate in water. Adjust with phosphoric acid to a pH of 3.5.

Mobile phase: Acetonitrile and Buffer (50:50)

Standard stock solution: 28 mg/mL of <u>USP Valproic Acid RS</u> in a suitable volumetric flask. Dissolve with 20% of the flask volume of <u>1 N sodium hydroxide</u>, and dilute with <u>water</u> to volume. Dilute this solution with *Buffer stage medium* to obtain a final concentration of about 2.8 mg/mL.

Standard solutions: Prepare a series of dilutions in *Buffer stage medium* from the *Standard stock solution* at 0.028, 0.11, 0.22, 0.50, and 0.70 mg/mL.

Sample solution: Withdraw 10 mL of the solution under test, and pass through a suitable filter of 35-µm pore size.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 215 nm

Column: 4.6-mm × 15-cm; 5-µm packing L7

Flow rate: 1 mL/min Injection volume: 50 μL

Run time: NLT 1.5 times the retention time of valproic acid

System suitability

Samples: 0.028, 0.11, 0.22, 0.50, and 0.70 mg/mL of the Standard solutions

Suitability requirements

Tailing factor: NMT 2.0, using the 0.50-mg/mL Standard solution

Correlation coefficient: NLT 0.999, using the five concentrations of the Standard solution

Relative standard deviation: NMT 2.0%, using the 0.50-mg/mL Standard solution

Analysis

Sample: Sample solution

From the standard curve, determine the concentration (C_i) of valproic acid ($C_8H_{16}O_2$) dissolved at each time point (i) using the response of each Sample solution.

Calculate the percentage of the labeled amount of valproic acid ($C_gH_{16}O_2$) dissolved at each time point i during the Buffer stage:

$$\begin{aligned} \text{Result}_1 &= C_1 \times V \times (1/L) \times 100 \\ \text{Result}_2 &= \{ [C_2 \times (V - V_S)] + (C_1 \times V_S) \} \times (1/L) \times 100 \\ \text{Result}_3 &= (\{C_3 \times [V - (2 \times V_S)]\} + [(C_2 + C_1) \times V_S]) \times (1/L) \times 100 \\ \text{Result}_4 &= (\{C_4 \times [V - (3 \times V_S)]\} + [(C_2 + C_2 + C_1) \times V_S]) \times (1/L) \times 100 \end{aligned}$$

C_i = concentration of valproic acid in the Sample solution withdrawn at time point i (mg/mL)

V = volume of the Buffer stage medium, 900 mL

L = label claim (mg/Tablet)

 V_s = volume of the Sample solution withdrawn at each time point i during the Buffer stage (mL)

Tolerances: The percentage of the labeled amount of valproic acid $(C_eH_{1e}O_2)$ dissolved at the times specified conform to <u>Table 2</u>.

Table 2

	Time Points	1	2	3	4
	Times	3 h	9 h	12 h	21 h
L1	Individual Tablets	10%-27%	35%-70%	44%-92%	NLT 87%
L2	Average	10%-27%	35%-70%	44%-92%	NLT 87%
L2	Individual Tablets	0%-37%	25%-80%	34%-102%	NLT 77%
L3	Average	10%-27%	35%-70%	44%-92%	NLT 87%
L3	Individual Tablets	NMT 2 Tablets are outside the range of 0%–37%, and no individual Tablet is outside the range of 0%–47%.	NMT 2 Tablets are outside the range of 25%–80%, and no individual Tablet is outside the range of 15%–90%.	NMT 2 Tablets are outside the range of 34%–102%, and no individual Tablet is outside the range of 24%–112%.	NMT 2 Tablets release less than 77%, and no individual Tablet releases less than 67%.

Test 3: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 3.

Acid stage medium: 0.1 N hydrochloric acid; 250 mL (row 1)

Buffer stage medium: pH 6.8 buffer (6.8 g of monobasic potassium phosphate and 0.92 g of sodium hydroxide in 1 L of water. Adjust with phosphoric acid or sodium hydroxide to a pH of 6.8 ± 0.05); 250 mL (rows 2–4)

Apparatus 3: 30 dips/min, 20-mesh polypropylene screen on top and bottom; 30-s drip time

Times: 1 h in Acid stage medium (row 1); 2, 12, and 24 h in Buffer stage medium (rows 2–4). The times in the Buffer stage medium include the time in the Acid stage medium.

Buffer: 0.25 g/L of <u>citric acid</u>, 0.2 g/L of <u>anhydrous dibasic sodium phosphate</u>, 3.4 g/L of <u>monobasic potassium phosphate</u>, and 0.85 g/L of <u>sodium hydroxide</u> in <u>water</u>. Adjust with <u>phosphoric acid</u> to a pH of 3.0 ± 0.05.

Mobile phase: Acetonitrile and Buffer (30:70)

Acid stage standard stock solution: 1 mg/mL of <u>USP Valproic Acid RS</u> in Acid stage medium. Dissolve a suitable amount of <u>USP Valproic Acid RS</u> in a suitable volumetric flask in 10% of the flask volume of <u>methanol</u> to solubilize the valproic acid. Dilute with Acid stage medium to volume.

Buffer stage standard stock solution: 1 mg/mL of <u>USP Valproic Acid RS</u> in *Buffer stage medium*. Dissolve a suitable amount of <u>USP Valproic Acid RS</u> in a suitable volumetric flask in 10% of the flask volume of <u>methanol</u> to solubilize the valproic acid. Dilute with *Buffer stage medium* to volume.

Acid stage standard solution: (L/2500) mg/mL of <u>USP Valproic Acid RS</u> from *Acid stage standard stock solution* in *Acid stage medium*, where L is the Tablet label claim in mg

Buffer stage standard solution: (L/700) mg/mL of <u>USP Valproic Acid RS</u> from *Buffer stage standard stock solution* in *Buffer stage medium*, where L is the Tablet label claim in mg

Sample solutions: Centrifuge a portion of the solution under test. Use the supernatant. [Note—The use of a centrifuge speed of 3000 rpm for 20 min may be suitable.]

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 3.9-mm × 15-cm; 5-µm packing L11

Flow rate: 2 mL/min

Injection volume: 100 µL for Tablets labeled to contain 250 mg; 50 µL for Tablets labeled to contain 500 mg

Run time: NLT 1.5 times the retention time of valproic acid

System suitability

Samples: Acid stage standard solution and Buffer stage standard solution

Suitability requirements

Tailing factor: NMT 2.0 each for the Acid stage standard solution and the Buffer stage standard solution

Relative standard deviation: NMT 2.0% each for the Acid stage standard solution and the Buffer stage standard solution

Analysis

Samples: Acid stage standard solution, Buffer stage standard solution, and Sample solutions

Calculate the concentration (C_i) of valproic acid ($C_aH_{1a}O_2$) in the sample withdrawn from the vessel at each time point (i):

Result, =
$$(r/r_s) \times C_s$$

 r_i = peak response from the Sample solution at time point i

 $r_{\rm s}$ = peak response from the Acid stage standard solution or Buffer stage standard solution

 $C_{\rm s}$ = concentration of <u>USP Valproic Acid RS</u> in the *Acid stage standard solution* or *Buffer stage standard solution* (mg/mL)

Calculate the percentage of the labeled amount of valproic acid $(C_8H_{16}O_2)$ dissolved at each time point (i):

Result₁ =
$$C_1 \times V \times (1/L) \times 100$$

Result₂ = $(C_2 + C_1) \times V \times (1/L) \times 100$
Result₃ = $(C_3 + C_2 + C_1) \times V \times (1/L) \times 100$
Result₄ = $(C_4 + C_2 + C_2 + C_1) \times V \times (1/L) \times 100$

 C_i = concentration of valproic acid in the Acid stage standard solution or Buffer stage standard solution withdrawn at time point i (mg/mL)

V = volume of the Acid stage medium or Buffer stage medium, 250 mL

L = label claim (mg/Tablet)

Tolerances: See <u>Table 3</u>.

Table 3

Time Point (i)	Time (h)	Amount Dissolved, Tablets labeled to contain 500 mg of valproic acid (%)	Amount Dissolved, Tablets labeled to contain 250 mg of valproic acid (%)
1	1	NMT 10	NMT 10
2	2	5-25	5-25
3	12	55–75	65-85
4	24	NLT 80	NLT 80

The percentage of the labeled amount of valproic acid (C_oH₁cO₂) dissolved at the times specified conform to <u>Dissolution (711)</u>,

Acceptance Table 2.

Test 4: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 4.

Acid stage medium: 0.1 N hydrochloric acid; 500 mL

Buffer stage stock medium: 19.0 g/L of tribasic sodium phosphate in water, adjusted with hydrochloric acid to a pH of 5.5

Buffer stage medium: 21.6 g/L of sodium lauryl sulfate in Buffer stage stock medium; 900 mL

Apparatus 2: 100 rpm, with sinkers for 250- and 500-mg Tablets

Times: 45 min in *Acid stage medium*; 3, 9, 12, and 18 h in *Buffer stage medium*. The times in the *Buffer stage medium* include the time in the *Acid stage medium*.

Buffer: 1.36 g/L of monobasic potassium phosphate and triethylamine (99.5: 0.5). Adjust with phosphoric acid to a pH of 2.75.

Solution A: 1.0 g/L of sodium lauryl sulfate in Buffer **Mobile phase:** Acetonitrile and Solution A (50:50), degassed

Acid stage standard stock solution: 1 mg/mL of <u>USP Valproic Acid RS</u> prepared as follows. Transfer a suitable amount of <u>USP Valproic Acid RS</u> to a volumetric flask, and dissolve in 20% of the flask volume of <u>acetonitrile</u> to solubilize valproic acid. Dilute with *Acid stage medium* to volume.

Acid stage standard solution: (L/5000) mg/mL of valproic acid from *Acid stage standard stock solution* in *Acid stage medium*, where L is the Tablet label claim, in mg

Buffer stage standard solution: (L/900) mg/mL of <u>USP Valproic Acid RS</u>, prepared as follows. Transfer a suitable amount of <u>USP Valproic Acid RS</u> to a volumetric flask, and dissolve in (L/50)% of the flask volume of <u>acetonitrile</u>. Dilute with *Buffer stage medium* to volume. L is the Tablet label claim in mg.

Acid stage sample solution: Withdraw a 10.0-mL aliquot at each time point, and pass a portion of the solution under test through a suitable filter of 0.45-µm pore size.

Buffer stage sample solution: Withdraw a 10.0-mL aliquot at each time point, and pass a portion of the solution under test through a suitable filter of 0.45-µm pore size. Replace the 10.0-mL aliquot withdrawn for analysis with a 10.0-mL aliquot of *Buffer stage medium*.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 15-cm; 5-µm packing L1

Column temperature: 30° Flow rate: 1.5 mL/min Injection volume: 50 µL

Run time: NLT 2.5 times the retention time of valproic acid

System suitability

Samples: Acid stage standard solution and Buffer stage standard solution

Suitability requirements

Tailing factor: NMT 2.0 each for the Acid stage standard solution and the Buffer stage standard solution

Relative standard deviation: NMT 2.0% each for the Acid stage standard solution and the Buffer stage standard solution

Analysis

Samples: Acid stage standard solution, Buffer stage standard solution, Acid stage sample solution, and Buffer stage sample solutions Calculate the percentage of the labeled amount (Q_A) of valproic acid $(C_8H_{16}O_2)$ dissolved in the Acid stage:

Result =
$$(r_{II}/r_{s}) \times C_{s} \times V_{\Delta} \times (1/L) \times 100$$

 $r_{_U}$ = peak response from the Acid stage sample solution

 r_s = peak response from the Acid stage standard solution

 C_s = concentration of <u>USP Valproic Acid RS</u> in the Acid stage standard solution (mg/mL)

 V_{Δ} = volume of the Acid stage medium, 500 mL

L = label claim (mg/Tablet)

Calculate the concentration (C_{i}) of valproic acid ($C_{g}H_{16}O_{2}$) in the sample withdrawn from the vessel at each Buffer stage time point i:

Result_i =
$$(r_{ij}/r_{s}) \times C_{s} \times 100$$

 r_u = peak response from the Buffer stage sample solution

 $r_{\rm s}$ = peak response from the Buffer stage standard solution

 C_s = concentration of <u>USP Valproic Acid RS</u> in the Buffer stage standard solution (mg/mL)

Calculate the percentage of the labeled amount (Q_i) of valproic acid ($C_gH_{16}O_2$) dissolved at each Buffer stage time point i:

$$\begin{aligned} \text{Result}_1 &= [C_1 \times V_B \times (1/L) \times 100] + Q_A \\ \text{Result}_2 &= \{[(C_2 \times V_B) + (C_1 \times V_S)] \times (1/L) \times 100\} + Q_A \\ \text{Result}_3 &= (\{(C_3 \times V_B) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100) + Q_A \\ \text{Result}_4 &= (\{(C_4 \times V_B) + [(C_2 + C_1 + C_1) \times V_S]\} \times (1/L) \times 100) + Q_A \end{aligned}$$

C, = concentration of valproic acid in the Buffer stage sample solution withdrawn at time point i (mg/mL)

 $V_{_{\rm R}}$ = volume of the *Buffer stage medium*, 900 mL

L = label claim (mg/Tablet)

 $Q_{_{A}}$ = percentage of the labeled amount of valproic acid dissolved in the Acid stage

 $V_{_{
m S}}$ = volume of the Buffer stage sample solution withdrawn from the vessel (mL)

Tolerances: See <u>Table 4</u>.

Table 4

Time Point (i)	Time (h)	Amount Dissolved, Tablets labeled to contain 500 mg of valproic acid (%)	Amount Dissolved, Tablets labeled to contain 250 mg of valproic acid (%)
1	3	10-30	10-30
2	9	40-70	35-60
3	12	60-90	50-80
4	18	NLT 85	NLT 85

The percentage of the labeled amount of valproic acid (C₈H₁₆O₂) dissolved at the times specified conform to <u>Dissolution (711)</u>,

Acceptance Table 2.

Test 5: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 5.

Acid stage medium: 0.1 N hydrochloric acid; 500 mL

Buffer stage stock medium: 7.8 g/L of monobasic sodium phosphate dihydrate in water, adjusted with 2 N sodium hydroxide solution to a pH of 5.5

Buffer stage medium: 21.6 g/L of sodium dodecyl sulfate in Buffer stage stock medium; 900 mL

Apparatus 2: 100 rpm, with three-prong sinkers

Times: 45 min in *Acid stage medium*; 3, 9, 12, and 24 h in *Buffer stage medium*. The times in the *Buffer stage medium* do not include the time in the *Acid stage medium*.

Procedure: After 45 min in Acid stage medium, discard the remainder of the Acid stage medium and add the Buffer stage medium.

Solution A: Dilute 5 mL of <u>phosphoric acid</u> with <u>water</u> to 25 mL.

Buffer: 6.8 g/L of monobasic potassium phosphate in water. Adjust with Solution A to a pH of 3.0.

Mobile phase: Acetonitrile and Buffer (40:60), degassed

Standard stock solution: 1.4 mg/mL of USP Valproic Acid RS in Mobile phase

Buffer stage standard solution: (L/900) mg/mL of valproic acid from *Standard stock solution* in *Buffer stage medium*, where *L* is the Tablet label claim in mg

Buffer stage sample solution: Withdraw a 10.0-mL aliquot at each time point, and pass a portion of the solution under test through a suitable filter of 0.45-µm pore size. Replace the 10.0-mL aliquot withdrawn for analysis with a 10.0-mL aliquot of *Buffer stage medium*.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 10-cm; 5-µm packing L1

Column temperature: 50° Flow rate: 1 mL/min Injection volume: 50 µL

Run time: NLT 1.5 times the retention time of valproic acid

System suitability

Sample: Buffer stage standard solution

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Buffer stage standard solution and Buffer stage sample solutions

Calculate the concentration (C_i) of valproic acid ($C_0H_{16}O_2$) in the sample withdrawn from the vessel at each Buffer stage time point in

Result, =
$$(r_i/r_s) \times C_s$$

 r_i = peak response from the Buffer stage sample solution

 $r_{\rm S}$ = peak response from the Buffer stage standard solution

C_s = concentration of <u>USP Valproic Acid RS</u> in the *Buffer stage standard solution* (mg/mL)

Calculate the percentage of the labeled amount (Q_i) of valproic acid $(C_gH_{16}Q_g)$ dissolved at each Buffer stage time point i:

$$\begin{aligned} \text{Result}_1 &= C_7 \times V_B \times (1/L) \times 100 \\ \text{Result}_2 &= [(C_2 \times V_B) + (C_1 \times V_S)] \times (1/L) \times 100 \\ \text{Result}_3 &= \{(C_3 \times V_B) + [(C_2 + C_7) \times V_S]\} \times (1/L) \times 100 \\ \text{Result}_4 &= \{(C_4 \times V_B) + [(C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100 \end{aligned}$$

C = concentration of valproic acid in the Buffer stage sample solution withdrawn at time point i (mg/mL)

 $V_{_{B}}$ = volume of the *Buffer stage medium*, 900 mL

L = label claim (mg/Tablet)

V_s = volume of the Buffer stage sample solution withdrawn from the vessel (mL)

Tolerances: See <u>Table 5</u>.

Table 5

Time Point (i)	Time (h)	Amount Dissolved (%)
1	3	10-30
2	9	40-60
3	12	45–85
4	24	NLT 85

The percentage of the labeled amount of valproic acid ($C_8H_{16}O_2$) dissolved at the times specified conform to <u>Dissolution (711)</u>,

Acceptance Table 2.

Test 6: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 6*.

Medium: pH 6.8 phosphate buffer (6.0 g/L of anhydrous monobasic sodium phosphate in water, adjusted with 240 g/L of sodium hydroxide in water to a pH of 6.8); 900 mL

Apparatus 2: 100 rpm

Times: 1, 4, 8, and 24 h in Medium

Buffer: 6.0 g/L of anhydrous monobasic sodium phosphate in water

Mobile phase: Acetonitrile and Buffer (50:50). Adjust with phosphoric acid to a pH of 3.0.

Standard solution: (L/900) mg/mL of <u>USP Valproic Acid RS</u>, where L is the label claim in mg/Tablet, prepared as follows. Transfer <u>USP Valproic Acid RS</u> to an appropriate volumetric flask. Add 5% of the flask volume of <u>methanol</u> to dissolve the valproic acid. Dilute with *Medium* to volume.

Sample solutions: Withdraw an aliquot at each time point, and pass a portion of the solution under test through a suitable filter.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 15-cm; 5-µm packing L7

Column temperature: 30° Flow rate: 1 mL/min Injection volume: 100 µL

Run time: NLT 2.5 times the retention time of valproic acid

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solutions

Calculate the concentration (C_i) of valproic acid $(C_8H_{16}O_2)$ in the sample withdrawn from the vessel at each time point i:

Result_i =
$$(r_i/r_s) \times C_s$$

 r_i = peak response from the Sample solution

 r_s = peak response from the Standard solution

 $C_{_{\rm S}}$ = concentration of <u>USP Valproic Acid RS</u> in the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount (Q_i) of valproic acid $(C_gH_{16}Q_g)$ dissolved at each Buffer stage time point i:

$$\begin{aligned} \text{Result}_1 &= C_{\gamma} \times V \times (1/L) \times 100 \\ \text{Result}_2 &= \{ [C_2 \times (V - V_S)] + (C_{\gamma} \times V_S) \} \times (1/L) \times 100 \\ \text{Result}_3 &= (\{C_3 \times [V - (2 \times V_S)]\} + [(C_2 + C_{\gamma}) \times V_S]) \times (1/L) \times 100 \\ \text{Result}_4 &= (\{C_4 \times [V - (3 \times V_S)]\} + [(C_3 + C_2 + C_{\gamma}) \times V_S]) \times (1/L) \times 100 \end{aligned}$$

 C_i = concentration of valproic acid in the Sample solution withdrawn at time point i (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

 V_s = volume of the Sample solution withdrawn from the vessel (mL)

Tolerances: See <u>Table 6</u>.

Table 6

Time Point (<i>i</i>)	Time (h)	Amount Dissolved, Tablets labeled to contain 500 mg of valproic acid (%)	Amount Dissolved, Tablets labeled to contain 250 mg of valproic acid (%)
1	1	10-30	10-30
2	4	25-45	28-48
3	8	40-60	40-65
4	24	NLT 70	NLT 70

The percentage of the labeled amount of valproic acid ($C_8H_{16}O_2$) dissolved at the times specified conform to <u>Dissolution (711)</u>,

Acceptance Table 2

Test 7: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 7.

Acid stage medium: 0.1 N hydrochloric acid; 500 mL

Buffer stage medium: pH 5.5 phosphate buffer with 75 mM sodium dodecyl sulfate (dissolve 78.0 g of monobasic sodium phosphate dihydrate in 10 L of water, adjust with 10 g/L of sodium hydroxide in water to a pH of 5.5, and add 216.3 g of sodium dodecyl sulfate); 900 ml

Apparatus 2: 100 rpm

Times: 45 min in *Acid stage medium*; 3, 9, 12, and 24 h in the *Buffer stage medium*. The times in the *Buffer stage medium* include the time in the *Acid stage medium*.

Procedure: After 45 min in the *Acid stage medium* and the collection of the *Acid stage sample solution*, discard the remainder of the *Acid stage medium* and add the *Buffer stage medium*.

Solution A: Dilute 10 mL of phosphoric acid with water to 100 mL.

Buffer: 3.5 g/L of monobasic sodium phosphate dihydrate in water, adjusted with Solution A to a pH of 3.5, and passed through a suitable filter.

Mobile phase: Acetonitrile and Buffer (35:65)

Standard stock solution: 0.7 mg/mL of <u>USP Valproic Acid RS</u> prepared as follows. Transfer a suitable quantity of <u>USP Valproic Acid RS</u> to an appropriate volumetric flask and dissolve in 10% of the final flask volume of <u>methanol</u>. Sonication may be used to promote dissolution. Dilute with *Mobile phase* to volume.

Standard solution: 0.14 mg/mL of <u>USP Valproic Acid RS</u> from the *Standard stock solution* in *Mobile phase* passed through a suitable filter of 0.45-µm pore size

Acid stage sample solution: Withdraw a 10.0-mL aliquot at the time point, and pass a portion of the solution under test through a suitable filter of 0.45-µm pore size.

Buffer stage sample stock solutions: Withdraw a 10.0-mL aliquot at each time point, and pass a portion of the solution under test through a suitable filter. Replace the 10.0-mL aliquot withdrawn for analysis with a 10.0-mL aliquot of *Buffer stage medium*.

Buffer stage sample solutions

For Tablets labeled to contain 500 mg of valproic acid: Dilute 5 mL of *Buffer stage sample stock solutions* with *Mobile phase* to 20 mL and pass through a suitable filter of 0.45-µm pore size.

For Tablets labeled to contain 250 mg of valproic acid: Dilute 5 mL of *Buffer stage sample stock solutions* with *Mobile phase* to 10 mL and pass through a suitable filter of 0.45-µm pore size.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 215 nm

Column: 4.6-mm × 15-cm; 5-µm packing L7

Flow rate: 2.0 mL/min Injection volume: 50 µL

Run time: NLT 2.5 times the retention time of valproic acid

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution, Acid stage sample solution, and Buffer stage sample solutions

Calculate the percentage of the labeled amount (Q_{λ}) of valproic acid $(C_{\alpha}H_{16}O_{\alpha})$ dissolved in the Acid stage:

Result =
$$(r_U/r_S) \times C_S \times V_A \times (1/L) \times 100$$

 r_{ij} = peak response from the Acid stage sample solution

 $r_{\rm s}$ = peak response from the Standard solution

 C_s = concentration of <u>USP Valproic Acid RS</u> in the Standard solution (mg/mL)

V = volume of the Acid stage medium, 500 mL

L = label claim (mg/Tablet)

Calculate the concentration (C_2) of valproic acid ($C_2H_{16}O_2$) in the sample withdrawn from the vessel at each Buffer stage time point i:

Result_i =
$$(r_i/r_s) \times C_s \times D$$

r_i = peak response from the Buffer stage sample solution

r_s = peak response from the Standard solution

 $C_{\rm S}$ = concentration of <u>USP Valproic Acid RS</u> in the *Standard solution* (mg/mL)

D = dilution factor between the Buffer stage sample solution and the Buffer stage sample stock solution

Calculate the percentage of the labeled amount of valproic acid $(C_gH_{1g}O_2)$ dissolved at each Buffer stage time point i:

$$\begin{aligned} \text{Result}_1 &= [C_1 \times V_B \times (1/L) \times 100] + Q_A \\ \text{Result}_2 &= \{ [(C_2 \times V_B) + (C_1 \times V_S)] \times (1/L) \times 100\} + Q_A \\ \text{Result}_3 &= (\{(C_3 \times V_B) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100) + Q_A \\ \text{Result}_4 &= (\{(C_4 \times V_B) + [(C_2 + C_1 + C_2) \times V_S]\} \times (1/L) \times 100) + Q_A \end{aligned}$$

C, = concentration of valproic acid in the Buffer stage sample solution withdrawn at time point i (mg/mL)

 $V_{_{\rm B}}$ = volume of the *Buffer stage medium*, 900 mL

L = label claim (mg/Tablet)

Q = percentage of the labeled amount of valproic acid dissolved in the Acid stage

 $V_{\rm s}^{-}$ = volume of the Buffer stage sample solution withdrawn at each time point and replaced with the Buffer stage medium (mL)

Tolerances: See <u>Table 7</u>.

Table 7

Time Point	Time (h)	Amount Dissolved, Tablets labeled to contain 500 mg of valproic acid (%)	Amount Dissolved, Tablets labeled to contain 250 mg of valproic acid (%)
1	3	10-35	18-38
2	9	35-55	47-72
3	12	45-65	55-90
4	24	NLT 80	NLT 80

The percentage of the labeled amount of valproic acid (C_gH₁₆O₂) dissolved at the times specified conform to <u>Dissolution (711)</u>,

Acceptance Table 2.

Test 8: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 8.

Medium: pH 6.8 phosphate buffer with 2% sodium dodecyl sulfate (20.0 g/L of <u>sodium dodecyl sulfate</u> and 6.9 g/L of <u>monobasic sodium phosphate dihydrate</u> in <u>water</u>, adjusted with 10 g/L of <u>sodium hydroxide</u> in <u>water</u> to a pH of 6.8); 900mL

Apparatus 2: 50 rpm **Times:** 2, 6, 12, and 24 h

Buffer A: 0.5 g/L of citric acid and 4 g/L of dibasic sodium phosphate in water

Buffer B: 6.8 g/L of monobasic potassium phosphate and 1.7 g/L of sodium hydroxide in water, adjusted with phosphoric acid to a pH of 7.4

Buffer C: Buffer A and Buffer B (50:50)

Mobile phase: Acetonitrile and Buffer C (30:70), adjusted with phosphoric acid to a pH of 3.0

Standard solution: (L/900) mg/mL of <u>USP Valproic Acid RS</u> prepared as follows. Transfer a suitable quantity of <u>USP Valproic Acid RS</u> to an appropriate volumetric flask and dissolve in 50% of the final volume of *Medium*. Sonication may be used to promote dissolution. Dilute with *Medium* to volume.

Sample solutions: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size. Replace with the same volume of *Medium*.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 3.9-mm × 15-cm; 4-µm packing L11

Column temperature: 30° Flow rate: 1.2 mL/min https://trungtamthuoc.com/ Injection volume: 50 µL

Run time: NLT 1.1 times the retention time of valproic acid

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solutions

Calculate the concentration (C_i) of valproic acid ($C_0H_{16}O_2$) in the sample withdrawn from the vessel at each time point i:

Result_i =
$$(r_i/r_s) \times C_s$$

r = peak response from the Sample solution

r_s = peak response from the Standard solution

 C_s = concentration of <u>USP Valproic Acid RS</u> in the Standard solution (mg/mL)

Calculate the percentage of the labeled amount of valproic acid $(C_8H_{16}O_2)$ dissolved at each time point i:

$$\begin{aligned} \text{Result}_1 &= C_1 \times V \times (1/L) \times 100 \\ \text{Result}_2 &= [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100 \\ \text{Result}_3 &= \{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100 \\ \text{Result}_4 &= \{(C_4 \times V) + [(C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100 \end{aligned}$$

C, = concentration of valproic acid in the Sample solution withdrawn at time point i (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

V_s = volume of the Sample solution withdrawn at each time point and replaced with Medium (mL)

Tolerances: See Table 8.

Table 8

Time Point (i)	Time (h)	Amount Dissolved (%)
1	2	10-35
2	6	35-60
3	12	55-90
4	24	NLT 80

The percentage of the labeled amount of valproic acid ($C_8H_{16}O_2$) dissolved at the times specified conform to <u>Dissolution (711)</u>,

Test 9: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 9.

Medium: pH 6.8 phosphate buffer with 75 mM sodium dodecyl sulfate [130 g/L of <u>sodium dodecyl sulfate</u> in <u>water</u> and pH 6.8 buffer (8.3 g/L of <u>monobasic sodium phosphate</u> in <u>water</u>, adjusted with 5 N hydrochloric acid or <u>5 N sodium hydroxide</u> to a pH of 6.8 and then degassed) (17:83)]; 900 mL

Apparatus 2: 100 rpm, with spiral sinkers

Times: 2, 8, 12, and 24 h

Buffer: 6.8 g/L of monobasic potassium phosphate in water, adjusted with phosphoric acid to a pH of 2.2 and passed through a suitable filter.

Mobile phase: Methanol, acetonitrile, and Buffer (50:10:40)

Standard solution: (L/900) mg/mL of <u>USP Valproic Acid RS</u> prepared as follows. Transfer a suitable quantity of <u>USP Valproic Acid RS</u> to an appropriate volumetric flask and dissolve in 10% of the final volume of <u>acetonitrile</u>. Dilute with *Medium* to volume.

<u>Acceptance Table 2</u>. ▲ (ERR 1-Oct-2023)

Sample solution: Pass a portion of the solution under test through a suitable filter.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 15-cm; 5-µm packing L7

Flow rate: 1 mL/min Injection volume: 10 μL

Run time: NLT 1.1 times the retention time of valproic acid

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of valproic acid $(C_RH_{16}O_2)$ in the sample withdrawn from the vessel at each time point i:

Result_i =
$$(r_i/r_s) \times C_s$$

 r_i = peak response from the Sample solution

 r_s = peak response from the Standard solution

C_s = concentration of <u>USP Valproic Acid RS</u> in the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of valproic acid $(C_8H_{16}O_2)$ dissolved at each time point i:

$$\begin{aligned} \text{Result}_1 &= C_1 \times V \times (1/L) \times 100 \\ \text{Result}_2 &= \{ [C_2 \times (V - V_S)] + (C_1 \times V_S) \} \times (1/L) \times 100 \\ \text{Result}_3 &= (\{C_3 \times [V - (2 \times V_S)]\} + [(C_2 + C_1) \times V_S]) \times (1/L) \times 100 \\ \text{Result}_4 &= (\{C_4 \times [V - (3 \times V_S)]\} + [(C_3 + C_2 + C_1) \times V_S]) \times (1/L) \times 100 \end{aligned}$$

 C_i = concentration of valproic acid in the Sample solution withdrawn at time point i (mg/mL)

V = volume of the Medium, 900 mL

L = label claim (mg/Tablet)

 V_s = volume of the Sample solution withdrawn at each time point i (mL)

Tolerances: See Table 9.

Table 9

Time Point (i)	Time (h)	Amount Dissolved (%)
1	2	15–40
2	8	40-70
3	12	50-85
4	24	NLT 70

The percentage of the labeled amount of valproic acid ($C_8H_{16}O_2$) dissolved at the times specified conform to <u>Dissolution (711)</u>,

Acceptance Table 2.

Test 10: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 10.

Acid stage medium: 0.1 N hydrochloric acid, degassed; 500 mL

Buffer stage medium: pH 5.5 phosphate buffer with 75 mM sodium dodecyl sulfate (21.6 g/L of sodium dodecyl sulfate, 6.9 g/L of monobasic sodium phosphate, and 0.12 g/L of sodium hydroxide in water, adjusted with diluted phosphoric acid or diluted sodium hydroxide to a pH of 5.5); 900 mL

Apparatus 2: 100 rpm

Times: 45 min in *Acid stage medium*; 3, 9, and 15 h in *Buffer stage medium*. After 45 min in the *Acid stage medium*, discard the excess *Acid stage medium* and use the same Tablets in the *Buffer stage medium*. The time in the *Buffer stage medium* does not include the time in the *Acid stage medium*.

Buffer A: 0.5 g/L of citric acid and 0.4 g/L of anhydrous dibasic sodium phosphate in water

Buffer B: 6.8 g/L of monobasic potassium phosphate and 1.7 g/L of sodium hydroxide in water, adjusted with diluted phosphoric acid to a pH of 7.4

Mobile phase: Acetonitrile, Buffer A, and Buffer B (50:25:25). Adjust with diluted phosphoric acid to a pH of 3.0.

Acid stage standard solution: (L/5000) mg/mL of <u>USP Valproic Acid RS</u> in *Acid stage medium* where L is the label claim of valproic acid in mg/Tablet

Buffer stage standard solution: (L/900) mg/mL of <u>USP Valproic Acid RS</u> in *Buffer stage medium* where L is the label claim of valproic acid in mg/Tablet

Acid stage sample solution: Pass a portion of the solution under test through a suitable filter, discard the first 2 mL, and use the filtrate.Buffer stage sample solution: Pass a portion of the solution under test through a suitable filter. Replace with the same volume of Buffer stage medium.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Flow rate: 1.8 mL/min Injection volume: 50 µL

Run time: NLT 2 times the retention time of valproic acid

System suitability

Samples: Acid stage standard solution and Buffer stage standard solution

Suitability requirements

Tailing factor: NMT 2.0, Acid stage standard solution and Buffer stage standard solution

Relative standard deviation: NMT 2.0%, Acid stage standard solution and Buffer stage standard solution

Analysis

Samples: Acid stage standard solution, Buffer stage standard solution, Acid stage sample solution, and Buffer stage sample solution Calculate the percentage (Q_n) of the labeled amount of valproic acid $(C_0H_{16}O_2)$ dissolved in the Acid stage:

Result =
$$(r_U/r_S) \times C_S \times V \times (1/L) \times 100$$

 r_{ij} = peak response from the Acid stage sample solution

 $r_{\rm s}$ = peak response from the Acid stage standard solution

C_s = concentration of <u>USP Valproic Acid RS</u> in the Acid stage standard solution (mg/mL)

V = volume of Acid stage medium, 500 mL

L = label claim (mg/Tablet)

Calculate the concentration (C_i) of valproic acid ($C_gH_{16}O_g$) in the sample withdrawn from the vessel at each time point i:

Result, =
$$(r/r_c) \times C_c$$

r_i = peak response from the Buffer stage sample solution

 $r_{\rm s}$ = peak response from the Buffer stage standard solution

 C_s = concentration of <u>USP Valproic Acid RS</u> in the *Buffer stage standard solution* (mg/mL)

Calculate the percentage of the labeled amount of valproic acid ($C_8H_{16}O_2$) dissolved at each time point i:

Result₁ =
$$[C_1 \times V \times (1/L) \times 100] + Q_A$$

Result₂ = {
$$[(C_2 \times V) + (C_1 \times V_2)] \times (1/L) \times 100$$
} + Q_A

Result₃ =
$$(\{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100) + Q_A$$

C, = concentration of valproic acid in the Buffer stage sample solution withdrawn at time point i (mg/mL)

V = volume of Buffer stage medium, 900 mL

= label claim (mg/Tablet)

Q_A = percentage of the labeled amount of valproic acid dissolved in the Acid stage

V_c = volume of the Buffer stage sample solution withdrawn at each time point and replaced with the Buffer stage medium (mL)

Tolerances

Acid stage: NMT 10% Buffer stage: See <u>Table 10</u>.

Table 10

Time Point (i)	Time (h)	Amount Dissolved (%)
1	3	15-40
2	9	40-70
3	15	NLT 85

The percentage of the labeled amount of valproic acid ($C_8H_{16}O_2$) dissolved at the times specified conform to <u>Dissolution (711)</u>,

Acceptance Table 2.

Test 11: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 11.

Acid stage medium: 0.1 N hydrochloric acid VS; 500 mL, degassed

Buffer stage medium: 0.05 M phosphate buffer with 75 mM sodium dodecyl sulfate (6.9 g/L of monobasic sodium phosphate and 21.6 g/L of sodium dodecyl sulfate in water, sonicated for 30 min to promote dissolution, and adjusted with 1 N sodium hydroxide VS to a pH of 5.5); 900 mL

Apparatus 2: 100 rpm, with suitable sinkers

Times: 45 min in *Acid stage medium*; 1.5, 6, 9, and 21 h in *Buffer stage medium*. The time in the *Buffer stage medium* includes the time in the *Acid stage medium*.

Procedure: After 45 min in Acid stage medium, discard the Acid stage medium and replace with the Buffer stage medium.

Buffer: 3.5 g/L of monobasic sodium phosphate in water. Adjust with phosphoric acid to a pH of 3.0.

Mobile phase: Acetonitrile and Buffer (50:50)

Standard stock solution: 2.75 mg/mL of USP Valproic Acid RS in methanol

Acid stage standard solution: (L/9100) mg/mL of valproic acid from *Standard stock solution* in *Acid stage medium*, where L is the label claim in mg/Tablet

Buffer stage standard solution: (L/910) mg/mL of valproic acid from *Standard stock solution* in *Buffer stage medium*, where L is the label claim in mg/Tablet

Acid stage sample solution: Pass a portion of the solution under test through a suitable filter and use the filtrate after discarding the first

Buffer stage sample solution: Pass a portion of the solution under test through a suitable filter and use the filtrate after discarding the first 2–3 mL.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 15-cm; 5-µm packing L7

Temperatures
Autosampler: 20°
Column: 45°
Flow rate: 1.5 mL/min
Injection volume: 100 µL

Run time: NLT 2 times the retention time of valproic acid

System suitability

Samples: Acid stage standard solution and Buffer stage standard solution

Suitability requirements

Tailing factor: NMT 2.0, Acid stage standard solution and Buffer stage standard solution

Relative standard deviation: NMT 2.0%, Acid stage standard solution and Buffer stage standard solution

Analysis

Samples: Acid stage standard solution, Buffer stage standard solution, Acid stage sample solution, and Buffer stage sample solution Calculate the percentage of the labeled amount of valproic acid $(C_8H_{16}O_2)$ dissolved during the Acid stage (Q_4) :

Result =
$$(r_1/r_s) \times C_s \times V_A \times (1/L) \times 100$$

 r_{ij} = peak response from the Acid stage sample solution

 r_s = peak response from the Acid stage standard solution

 C_s = concentration of <u>USP Valproic Acid RS</u> in the *Acid stage standard solution* (mg/mL)

 V_{A} = volume of the Acid stage medium, 500 mL

L = label claim (mg/Tablet)

Calculate the concentration (C_i) of valproic acid $(C_8H_{16}O_2)$ in the sample withdrawn from the vessel at each Buffer stage time point is

Result_i =
$$(r_i/r_s) \times C_s$$

r, = peak response from the Buffer stage sample solution

 $r_{\rm s}$ = peak response from the Buffer stage standard solution

 C_s = concentration of <u>USP Valproic Acid RS</u> in the *Buffer stage standard solution* (mg/mL)

Calculate the percentage of the labeled amount of valproic acid ($C_gH_{16}O_2$) dissolved at each time point i during the Buffer stage:

$$\begin{aligned} \text{Result}_1 &= C_{_{1}} \times V_{_{B}} \times (1/L) \times 100 \\ \text{Result}_2 &= \{ [C_{_{2}} \times (V_{_{B}} - V_{_{S}})] + (C_{_{1}} \times V_{_{S}}) \} \times (1/L) \times 100 \\ \text{Result}_3 &= (\{C_{_{3}} \times [V_{_{B}} - (2 \times V_{_{S}})]\} + [(C_{_{2}} + C_{_{1}}) \times V_{_{S}}]) \times (1/L) \times 100 \\ \text{Result}_4 &= (\{C_{_{4}} \times [V_{_{B}} - (3 \times V_{_{S}})]\} + [(C_{_{3}} + C_{_{2}} + C_{_{1}}) \times V_{_{S}}]) \times (1/L) \times 100 \end{aligned}$$

C_i = concentration of valproic acid in the Buffer stage sample solution withdrawn at time point i (mg/mL)

 V_p = volume of the Buffer stage medium, 900 mL

L = label claim (mg/Tablet)

 $V_{\rm s}$ = volume of the Buffer stage sample solution withdrawn at each time point i during the Buffer stage (mL)

Tolerances

Acid stage: NMT 10% of the labeled amount of valproic acid is dissolved in 45 min

Buffer stage: See Table 11.

Table 11

Time Point	Time	Amount Dissolved, Tablets labeled to contain 500 mg of valproic acid	Amount Dissolved, Tablets labeled to contain 250 mg of valproic acid
(i)	(h)	(%)	(%)
1	1.5	NMT 20	NMT 20
2	6	32-52	40-60
3	9	48-68	57-77
4	21	NLT 80	NLT 80

The percentage of the labeled amount of valproic acid ($C_8H_{16}O_2$) dissolved at the times specified conform to <u>Dissolution (711)</u>,

Acceptance Table 2.

Test 12: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 12.

Medium: Phosphate buffer pH 6.8 with 2% <u>sodium dodecyl sulfate</u> (dissolve 6.9 g of <u>sodium phosphate monobasic dihydrate</u> and 20.0 g of <u>sodium dodecyl sulfate</u> in 1000 mL of <u>water</u>, adjust with 10 g/L of <u>sodium hydroxide</u> in <u>water</u> to a pH of 6.8); 900 mL

Apparatus 2: 50 rpm, with suitable sinker

Times: 2, 6, and 24 h

Buffer A: 0.5 g/L of citric acid and 4 g/L of sodium phosphate dibasic, anhydrous in water

Buffer B: 6.8 g/L of monobasic potassium phosphate and 1.7 g/L of sodium hydroxide prepared as follows. Dissolve 6.8 g of monobasic potassium phosphate and 1.7 g of sodium hydroxide in 1000 mL of water, adjust with phosphoric acid to a pH of 7.4.

Solution A: Buffer A and Buffer B (50:50)

Mobile phase: Acetonitrile and Solution A (30:70), adjust with phosphoric acid to a pH of 3.0

Standard solution: (L/900) mg/mL of USP Valproic Acid RS in Medium. Sonicate to dissolve if necessary.

Sample solution: At the times specified, withdraw 10 mL of aliquot. Replace the volume withdrawn with an equal volume of fresh *Medium*. Pass a portion of the solution under test through a suitable glass fiber filter of 0.45-µm pore size, discarding the first 3 mL of filtrate.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 3.9-mm × 15-cm; 4-µm packing L11

Column temperature: 30° Flow rate: 1.2 mL/min Injection volume: 50 µL

Run time: NLT 1.5 times the retention time of valproic acid

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of valproic acid $(C_gH_{16}O_2)$ in the sample withdrawn from the vessel at each time point i:

Result_i =
$$(r_i/r_s) \times C_s$$

r, = peak response of valproic acid from the Sample solution

 $r_{\rm s}$ = peak response of valproic acid from the Standard solution

C_s = concentration of <u>USP Valproic Acid RS</u> in the Standard solution (mg/mL)

Calculate the percentage of the labeled amount of valproic acid $(C_8H_{16}O_2)$ dissolved at each time point i:

$$Result_1 = C_1 \times V \times (1/L) \times 100$$

Result₂ =
$$[(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

Result₃ =
$$\{(C_3 \times V) + [(C_2 + C_1) \times V_2]\} \times (1/L) \times 100$$

 C_i = concentration of valproic acid in the Sample solution withdrawn at time point i (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

V_s = volume of the Sample solution withdrawn at each time point and replaced with Medium (mL)

Tolerances: See <u>Table 12</u>.

Table 12

Time Point (i)	Time (h)	Amount Dissolved (%)
1	2	20-40
2	6	40-60
3	24	NLT 80

The percentage of the labeled amount of valproic acid ($C_8H_{16}O_2$) dissolved at the times specified conform to <u>Dissolution (711)</u>,

Acceptance Table 2.

• **UNIFORMITY OF DOSAGE UNITS (905)**: Meet the requirements

- Packaging and Storage: Preserve in well-closed containers, and store at controlled room temperature.
- LABELING: When more than one Dissolution test is given, the labeling states the Dissolution test used only if Test 1 is not used.
- USP REFERENCE STANDARDS (11)

 USP Valproic Acid RS

 $\textbf{Auxiliary Information} \text{ - Please } \underline{\text{check for your question in the FAQs}} \text{ before contacting USP.}$

Topic/Question	Contact	Expert Committee
DIVALPROEX SODIUM EXTENDED-RELEASE TABLETS	Documentary Standards Support	SM42020 Small Molecules 4

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 42(5)

Current DocID: GUID-47FA16EB-6878-49ED-8C49-88118A50AC43_8_en-US

DOI: https://doi.org/10.31003/USPNF_M826_08_01

DOI ref: 17b5c