Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-Dec-2022
Document Type: USP Monographs
Docld: GUID-350307BB-61B2-4090-8CEA-01374092629F_3_en-US
DOI: https://doi.org/10.31003/USPNF_M11815_03_01
DOI Ref: mp6dl

© 2025 USPC Do not distribute

Diphenhydramine Hydrochloride Oral Powder

DEFINITION

Diphenhydramine Hydrochloride Oral Powder contains NLT 90.0% and NMT 110.0% of the labeled amount of diphenhydramine hydrochloride $(C_{17}H_{21}NO \cdot HCI)$.

IDENTIFICATION

- A. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.
- B. The UV spectrum of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

Change to read:

• PROCEDURE

▲ (USP 1-Dec-2022)

Buffer: 5.52 g/L of monobasic potassium hexafluorophosphate in <u>water</u> (USP 1-Dec-2022)

Solution A: ▲Add 0.5 mL of phosphoric acid per 1 L of Buffer. (USP 1-Dec-2022)

Solution B: ▲For each liter, mix 700 mL of <u>acetonitrile</u> with 300 mL of <u>Buffer</u>. Add 0.5 mL of <u>phosphoric acid</u> per 1 L of this mixture.

Dec-2022)

Mobile phase: See <u>Table 1</u>.

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	70	30
0.5	70	30
3.4	45	55
4.3	20	80
4.6	20	80
4.7	70	30
5.3	70	30

Diluent: ▲For each liter, mix 300 mL of acetonitrile, 700 mL of water, and 10 mL of acetic acid, glacial. (USP 1-Dec-2022)

System suitability solution: 0.0025 mg/mL each of <u>USP Diphenhydramine Hydrochloride RS</u>, <u>USP Diphenhydramine Related Compound A RS</u>, and <u>USP Benzhydrol RS</u> in *Diluent*. ≜Pass the solution through a polytetrafluoroethylene (PTFE) filter of 0.2-µm pore size. (USP 1-Dec-2022)

Standard solution: 0.25 mg/mL of <u>USP Diphenhydramine Hydrochloride RS</u> in *Diluent*. ≜Pass the solution through a PTFE filter of 0.2-µm pore size. ▲ (USP 1-Dec-2022)

Sample solution: Nominally 0.25 mg/mL of diphenhydramine hydrochloride in *Diluent* prepared as follows. Remove the contents of NLT 5 pouches as completely as possible, and weigh. Transfer a portion of the composite powder, equivalent to 50 mg of diphenhydramine hydrochloride, to a 200-mL volumetric flask. Dilute with *Diluent* to volume. ≜Pass the solution through a PTFE filter of 0.2-µm pore size. ▲

(USP 1-Dec-2022)

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 220 nm. For *Identification B*, use a diode array detector in the range of 210–400 nm.

Column: 2.1-mm × 5-cm; 1.7-µm packing L1

Column temperature: 40° Flow rate: 0.9 mL/minInjection volume: $2.5 \mu L$

System suitability

Samples: System suitability solution and Standard solution [Note—See <u>Table 2</u> for the relative retention times.]

Suitability requirements

Resolution: NLT 2.0 between benzhydrol and diphenhydramine related compound A; NLT 2.0 between diphenhydramine related compound

A and diphenhydramine, System suitability solution

Tailing factor: NMT 2.0, Standard solution

Relative standard deviation: NMT ▲1.0%, (USP 1-Dec-2022) Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of diphenhydramine hydrochloride ($C_{17}H_{21}NO \cdot HCI$) in the portion of Oral Powder taken:

Result =
$$(r_{IJ}/r_{S}) \times (C_{S}/C_{IJ}) \times 100$$

 $r_{_{U}}$ = peak response of diphenhydramine from the Sample solution

 r_s = peak response of diphenhydramine from the Standard solution

 $C_{\rm S}$ = concentration of <u>USP Diphenhydramine Hydrochloride RS</u> in the *Standard solution* (mg/mL)

C, = nominal concentration of diphenhydramine hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: 90.0%-110.0%

PERFORMANCE TESTS

• UNIFORMITY OF DOSAGE UNITS (905): Meets the requirements

IMPURITIES

Change to read:

• ORGANIC IMPURITIES

Buffer, Solution A, Solution B, Mobile phase, Diluent, System suitability solution, A (USP 1-Dec-2022) and Chromatographic system: Proceed as directed in the Assay.

Standard solution: 0.5 μg/mL each of <u>USP Diphenhydramine Hydrochloride RS</u> and <u>USP Benzophenone RS</u>, Δ 1.25 μg/mL (USP 1-Dec-2022) of <u>USP Diphenhydramine Related Compound A RS</u>, and Δ 2.5 μg/mL (USP 1-Dec-2022) each of <u>USP Benzhydrol RS</u> and <u>USP Diphenhydramine N-Oxide RS</u> in *Diluent*

*Sample solution: Nominally 250 μg/mL of diphenhydramine hydrochloride in *Diluent* from Oral Powder, prepared as directed in the *Assay* (USP 1-Dec-2022)

System suitability

Samples: System suitability solution and Standard solution

[Note—See <u>Table 2</u> for the relative retention times.]

Suitability requirements

Resolution: NLT 2.0 between benzhydrol and diphenhydramine related compound A; NLT 2.0 between diphenhydramine related compound A and diphenhydramine, *System suitability solution*

Relative standard deviation: NMT 5.0% for each peak, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of diphenhydramine related compound A, benzhydrol, benzophenone, or diphenhydramine *N*-oxide in the portion of Oral Powder taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times 100$$

- $r_{_U}$ = peak response of diphenhydramine related compound A, benzhydrol, benzophenone, or diphenhydramine N-oxide from the Sample solution
- $r_{_{\rm S}}$ = peak response of diphenhydramine related compound A, benzhydrol, benzophenone, or diphenhydramine N-oxide from the Standard solution

 C_S = concentration of <u>USP Diphenhydramine Related Compound A RS, USP Benzhydrol RS, USP Benzophenone RS</u>, or <u>USP Diphenhydramine N-Oxide RS</u> in the *Standard solution* ($^{\blacktriangle}\mu$ g/mL $_{\blacktriangle}$ (USP 1-Dec-2022))

 C_U = nominal concentration of diphenhydramine hydrochloride in the Sample solution ($^{\triangle}\mu$ g/mL $_{\Delta}$ (USP 1-Dec-2022))

Calculate the percentage of any unspecified degradation product in the portion of Oral Powder taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

 r_{ii} = peak response of any unspecified degradation product from the Sample solution

 $r_{\rm s}$ = peak response of diphenhydramine from the Standard solution

 C_S = concentration of <u>USP Diphenhydramine Hydrochloride RS</u> in the Standard solution ($^{\triangle}\mu$ g/mL $_{\triangle}$ (USP 1-Dec-2022))

 C_U = nominal concentration of diphenhydramine hydrochloride in the Sample solution ($^{\triangle}\mu$ g/mL $_{\Delta}$ (USP 1-Dec-2022))

Acceptance criteria: See <u>Table 2</u>.

Table 2

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Benzhydrol	0.8	1.0
Diphenhydramine related compound A	0.9	0.5
Diphenhydramine	1.0	-
Diphenhydramine N-oxide	1.1	1.0
Benzophenone	1.2	▲0.4 _▲ (USP 1-Dec-2022)
Any unspecified degradation product	C-1	0.2
Total degradation products	-	3.0

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in tight, unit-dose containers. Store at controlled room temperature.

Change to read:

• USP REFERENCE STANDARDS (11)

USP Benzhydrol RS

Diphenylmethanol.

USP Benzophenone RS

▲Benzophenone; also known as (USP 1-Dec-2022) diphenylmethanone.

C₁₃H₁₀O 182.22

USP Diphenhydramine Hydrochloride RS

USP Diphenhydramine Related Compound A RS

2-(Diphenylmethoxy)-*N*-methylethanamine hydrochloride.

 $C_{16}H_{19}NO \cdot HCI$ 277.79

USP Diphenhydramine N-Oxide RS

 $\hbox{$2$-(Benzhydryloxy)-$\it N,N$-dimethyle than-$1$-amine oxide hydrochloride.}$

C₁₇H₂₁NO₂·HCl 307.82

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
DIPHENHYDRAMINE HYDROCHLORIDE ORAL POWDER	<u>Documentary Standards Support</u>	SM52020 Small Molecules 5

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 47(3)

Current DocID: GUID-350307BB-61B2-4090-8CEA-01374092629F_3_en-US

DOI: https://doi.org/10.31003/USPNF_M11815_03_01

DOI ref: mp6dl

