Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-Aug-2013
Document Type: USP Monographs
DocId: GUID-08FA3B17-8367-4B9B-B460-A26EC267A907_1_en-US
DOI: https://doi.org/10.31003/USPNF_M4710_01_01
DOI Ref: g0azj

© 2025 USPC Do not distribute

Diphenhydramine Citrate and Ibuprofen Tablets

DEFINITION

Diphenhydramine Citrate and Ibuprofen Tablets contain NLT 90.0% and NMT 110.0% of the labeled amounts of diphenhydramine citrate $(C_{17}H_{21}NO \cdot C_6H_9O_7)$ and ibuprofen $(C_{12}H_{19}O_2)$.

IDENTIFICATION

• A. The retention times of the diphenhydramine and ibuprofen peaks from the Sample solution correspond to those of the Standard solution, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer A: 6.9 g/L of monobasic sodium phosphate in water

Buffer B: 6.9 g/L of monobasic sodium phosphate in water. Adjust with triethylamine to a pH of 7.2.

Mobile phase: Acetonitrile, triethylamine, glacial acetic acid, and Buffer A (45:0.2:0.2:55)

Diluent: Acetonitrile and Buffer B (3:2)

Standard solution: 1.1 mg/mL of <u>USP Diphenhydramine Citrate RS</u> and 5.7 mg/mL of <u>USP Ibuprofen RS</u> in *Diluent*. [Note—Sonicate as necessary.]

Sample solution: Transfer 10 Tablets into a suitable volumetric flask, add 350 mL of *Diluent*, and shake with a rotary shaker for 20 min. Sonicate for 20 min with intermediate shaking to obtain a solution containing about 1.1 mg/mL of diphenhydramine citrate and 5.7 mg/mL of ibuprofen. Centrifuge an aliquot at 4000 rpm for 10 min, and use the supernatant. [Note—Do not dilute to volume.]

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 260 nm

Column: 4.6-mm × 15-cm; 5-µm packing L1

Flow rate: 1.2 mL/min Injection size: 20 µL

Run time: 1.3 times the retention time of ibuprofen

System suitability

Sample: Standard solution **Suitability requirements**

Tailing factor: NMT 2.0 for both diphenhydramine and ibuprofen

Relative standard deviation: NMT 2.0% for both diphenhydramine and ibuprofen

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amounts of diphenhydramine citrate $(C_{17}H_{21}NO \cdot C_6H_8O_7)$ and ibuprofen $(C_{13}H_{18}O_2)$ in the portion of Tablets taken:

Result =
$$(r_{IJ}/r_{S}) \times (C_{S}/C_{IJ}) \times 100$$

 r_{ij} = peak response of the corresponding analyte from the Sample solution

 $r_{\rm s}$ = peak response of the corresponding analyte from the Standard solution

C_s = concentration of the appropriate USP Reference Standard in the Standard solution (mg/mL)

 C_{ij} = nominal concentration of the corresponding analyte in the Sample solution (mg/mL)

Acceptance criteria: 90.0%-110.0% for both diphenhydramine citrate and ibuprofen

PERFORMANCE TESTS

• DISSOLUTION (711)

Medium: pH 6.5 phosphate buffer (Transfer 250 mL of 0.2 M monobasic potassium phosphate and 58 mL of 0.2 M sodium hydroxide to a 1000-mL volumetric flask, and dilute with water to volume.); 900 mL, deaerated

Apparatus 2: 50 rpm **Time:** 30 min

Buffer solution: 6.9 g/L of sodium dihydrogen phosphate monohydrate in water **Ibuprofen standard stock solution:** 1.1 mg/mL of <u>USP Ibuprofen RS</u> in acetonitrile

Diphenhydramine citrate standard stock solution: 1.1 mg/mL of USP Diphenhydramine Citrate RS in water

Standard solution: Transfer 5 mL of the Ibuprofen standard stock solution and 1 mL of Diphenhydramine citrate standard stock solution to a 25-

mL volumetric flask, and dilute with Medium to volume.

Sample solution: Pass a portion of the solution under test through a suitable filter.

Mobile phase: Acetonitrile, triethylamine, glacial acetic acid, and Buffer solution (45:0.2:0.2:55)

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm × 15-cm, 5-µm packing L1

Flow rate: 1.2 mL/min Injection size: 20 µL System suitability

Sample: Standard solution **Suitability requirements**

Tailing factor: NMT 2.0 for both diphenhydramine and ibuprofen

Relative standard deviation: NMT 2.0% for both diphenhydramine and ibuprofen

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of diphenhydramine and ibuprofen dissolved:

Result =
$$(r_{t}/r_{s}) \times (C_{s}/L) \times V \times 100$$

r, = peak response of ibuprofen or diphenhydramine from the Sample solution

 $r_{\rm S}$ = peak response of ibuprofen or diphenhydramine from the Standard solution

 C_s = concentration of ibuprofen or diphenhydramine in the Standard solution

L = label claim for ibuprofen or diphenhydramine (mg/Tablet)

V = volume of Medium, 900 mL

Tolerances: NLT 80% (Q) of the labeled amounts of diphenhydramine and ibuprofen are dissolved.

• **Uniformity of Dosage Units** (905): Meet the requirements

IMPURITIES

Organic Impurities

Buffer A: 1 mL of phosphoric acid in 1 L of water. Adjust with triethylamine to a pH of 3.2.

Buffer B: 1 mL of phosphoric acid and 1.0 g of monobasic potassium phosphate in 1 L of water. Adjust with triethylamine to a pH of 3.7.

Solution A: Acetonitrile and *Buffer A* (1:4) **Solution B:** Acetonitrile and *Buffer B* (1:1)

Mobile phase: See <u>Table 1</u>.

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	100	0
30	50	50
45	50	50
80	40	60
85	100	0
100	100	0

Standard solution: 0.004 mg/mL of USP Diphenhydramine Citrate RS and 0.02 mg/mL of USP Ibuprofen RS in Solution B

System suitability solution: 0.004 mg/mL of <u>USP Diphenhydramine Related Compound A RS</u>, 0.8 mg/mL of <u>USP Diphenhydramine Citrate RS</u>, and 4 mg/mL of <u>USP Ibuprofen RS</u> in *Solution B*

Sample solution: Transfer an amount of powder from ground Tablets (NLT 20) to a suitable volumetric flask. Add 70% of the flask volume of *Solution B*, sonicate for 20 min and dilute with *Solution B* to volume to obtain a solution containing about 0.8 mg/mL of diphenhydramine citrate and 4 mg/mL of ibuprofen. Centrifuge an aliquot at 4000 rpm for 10 min, and use the supernatant.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm × 15-cm; 5-µm packing L1

Flow rate: 1 mL/min Injection size: 10 µL System suitability

Samples: Standard solution and System suitability solution

Suitability requirements

Resolution: NLT 0.8 between diphenhydramine and diphenhydramine related compound A, System suitability solution

Tailing factor: NMT 2.0 for both diphenhydramine and ibuprofen, Standard solution

Relative standard deviation: NMT 5.0% for both diphenhydramine and ibuprofen, Standard solution

Analysis

Samples: Standard solution and Sample solution

Identify the ibuprofen and diphenhydramine impurities using the relative retention times given in <u>Table 2</u>. Calculate the percentage of each diphenhydramine impurity and unspecified impurities in the portion of Tablets taken:

Result =
$$(r_{11}/r_{S}) \times (C_{S}/C_{11}) \times (1/F) \times 100$$

 r_{ij} = peak response of each impurity from the Sample solution

 $r_{\rm o}$ = peak response of diphenhydramine from the Standard solution

 C_S = concentration of <u>USP Diphenhydramine Citrate RS</u> in the *Standard solution* (mg/mL)

 $C_{_U}^{}$ = nominal concentration of diphenhydramine citrate in the Sample solution (mg/mL)

F = relative response factor (see <u>Table 2</u>)

Calculate the percentage of the ibuprofen related impurity in the portion of Tablets taken:

Result =
$$(r_{ij}/r_{s}) \times (C_{s}/C_{ij}) \times (1/F) \times 100$$

 r_{ij} = peak response of the ibuprofen related impurity from the Sample solution

 $r_{\rm s}$ = peak response of ibuprofen from the Standard solution

 C_S = concentration of <u>USP Ibuprofen RS</u> in the Standard solution (mg/mL)

 $C_{_{\!U}}^{}^{}$ = nominal concentration of ibuprofen in the Sample solution (mg/mL)

F = relative response factor (see <u>Table 2</u>)

Acceptance criteria: See <u>Table 2</u>.

Table 2

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Diphenhydramine related compound A ^a	0.95	1.3	0.26
Diphenhydramine	1.00	1.0	_
Unidentified diphenhydramine degradation product	1.32	1.0	0.2
Unidentified diphenhydramine degradation product	1.46	1.0	0.2
Unidentified ibuprofen degradation product	1.49	1.0	0.1
Methyl ibuprofen ^{b,c}	1.86	-	-
Unidentified diphenhydramine degradation product	1.96	1.0	0.2
Benzhydryl bromide ^d	2.49	2.4	0.26
Ibuprofen amide ^{b,e}	2.87	_	_
Isopropyl ibuprofen ^{b.f}	3.45	_	_
<i>n</i> -Propyl ibuprofen ^{b.g}	3.71	-	-
meta-lbuprofen ^{b,h}	5.09	-	-
Ibuprofen	5.31	-	-
<i>n</i> -Butyl ibuprofen ^{<u>b</u>,i}	5.68	-	-
Any other individual unspecified degradation product ^j	-	1.0	0.2
Total impurities ^k	_	-	1.0

^a 2-(Diphenylmethoxy)-*N*-methylethanamine.

^b Process impurity provided for information only; the content is not calculated and not reported.

^c 2-*p*-Tolylpropanoic acid.

^d (Bromomethylene)dibenzene.

- e 2-(4-Isobutylphenyl) propanamide.
- f 2-(4-Isopropylphenyl)propanoic acid.
- ^g 2-(4-Propylphenyl)propanoic acid.
- ^h 2-(3-Isobutylphenyl)propanoic acid.
- i 2-(4-Butylphenyl)propanoic acid.
- j Exclude peaks that elute before 4 min or after 80 min.
- k Total impurities excludes ibuprofen related compound C.

· LIMIT OF IBUPROFEN RELATED COMPOUND C

Buffer: 10 g/L of chloroacetic acid in water. Adjust with ammonium hydroxide to a pH of 3.0.

Mobile phase: Acetonitrile and Buffer (3:2)

Internal standard solution: 0.35 mg/mL of valerophenone in Mobile phase

Standard stock solution: 0.6 mg/mL of <u>USP Ibuprofen Related Compound C RS</u> in acetonitrile

Standard solution: 0.012 mg/mL of <u>USP Ibuprofen Related Compound C RS</u> in *Internal standard solution*; prepared by diluting 2 mL of

Standard stock solution with Internal standard solution to 100 mL

Sample solution: Transfer an amount of powder equivalent to 1200 mg of ibuprofen from ground Tablets (NLT 20) to a suitable volumetric flask. Add 100 mL of *Internal standard solution*, and sonicate for 20 min to obtain a solution containing about 12 mg/mL of ibuprofen. Pass through a suitable filter, and use the filtrate. [Note—Do not dilute to volume.]

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Flow rate: 2 mL/min Injection size: 5 µL System suitability

Sample: Standard solution

[Note—The relative retention times for valerophenone and ibuprofen related compound C are 0.86 and 1.0, respectively.]

Suitability requirements

Tailing factor: NMT 2.5 for both valerophenone and ibuprofen related compound C

Relative standard deviation: NMT 2.0%

Resolution: NLT 2.5 between the valerophenone and ibuprofen related compound C peaks

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of ibuprofen related compound C ($\mathrm{C_{12}H_{16}O}$) in the portion of Tablets taken:

Result =
$$(R_U/R_S) \times (C_S/C_U) \times 100$$

R₁₁ = peak area ratio of ibuprofen related compound C to valerophenone from the Sample solution

R_c = peak area ratio of ibuprofen related compound C to valerophenone from the Standard solution

C_s = concentration of <u>USP Ibuprofen Related Compound C RS</u> in the Standard solution (mg/mL)

C₁₁ = nominal concentration of ibuprofen in the Sample solution (mg/mL)

Acceptance criteria: NMT 0.1% of ibuprofen related compound C

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in tight containers. Store at controlled room temperature.

• USP REFERENCE STANDARDS (11)

USP Diphenhydramine Citrate RS

USP Diphenhydramine Related Compound A RS

2-(Diphenylmethoxy)-N-methylethanamine hydrochloride.

C₁₆H₁₉NO · HCl 277.79

USP Ibuprofen RS

USP Ibuprofen Related Compound C RS

4-Isobutylacetophenone.

 $C_{12}^{}H_{16}^{}O$

176.25

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
DIPHENHYDRAMINE CITRATE AND IBUPROFEN TABLETS	<u>Documentary Standards Support</u>	SM52020 Small Molecules 5

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 37(3)

Current DocID: GUID-08FA3B17-8367-4B9B-B460-A26EC267A907_1_en-US

DOI: https://doi.org/10.31003/USPNF_M4710_01_01

DOI ref: g0azj