Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-Nov-2021
Document Type: USP Monographs
DocId: GUID-DA5F67E4-3505-4BCE-87CE-98DAD3D62E73_2_en-US
DOI: https://doi.org/10.31003/USPNF_M26410_02_01
DOI Ref: 0d1p5

© 2025 USPC Do not distribute

Dimenhydrinate Oral Solution

» Dimenhydrinate Oral Solution contains not less than 90.0 percent and not more than 110.0 percent of the labeled amount of dimenhydrinate $(C_{17}H_{21}NO \cdot C_7H_7CIN_4O_2)$.

Packaging and storage-Preserve in tight containers.

USP REFERENCE STANDARDS (11)

USP Dimenhydrinate RS

Identification—The relative retention times of the major peaks for 8-chlorotheophylline and diphenhydramine in the chromatogram of the *Assay* preparation correspond to those in the chromatogram of the *Standard preparation*, as obtained in the *Assay*.

Change to read:

Content of 8-chlorotheophylline-

Ammonium bicarbonate solution ▲—Dissolve 4 g of ammonium bicarbonate in 250 mL of water.

Diluent-Dissolve 4 g of ammonium bicarbonate in 200 mL of water. Add 50 mL of methanol, and mix.

Solution A-Dissolve 0.8 g of ammonium bicarbonate in 800 mL of water. Add 200 mL of methanol, filter, and degas.

Solution B-Dissolve 0.8 g of ammonium bicarbonate in 150 mL of water. Add 850 mL of methanol, filter, and degas.

Mobile phase—Use variable mixtures of Solution A and Solution B as directed for Chromatographic system. Make adjustments if necessary (see <u>System Suitability</u> under <u>Chromatography (621)</u>).

Internal standard solution—Prepare a solution in methanol containing 2.0 mg of 2-hydroxybenzyl alcohol per mL. ▲ (ERR 1-Nov-2021)

Standard solution—Accurately weigh about 50 mg of <u>USP Dimenhydrinate RS</u>, add about 5 mL of *Ammonium bicarbonate solution* and 20.0 mL of *Internal standard solution*, and mix. To 1 mL of this solution add about 9 mL of *Diluent*, and mix.

Chromatographic system (see Chromatography (621))— The liquid chromatograph is equipped with a 229-nm detector and a 4.6-mm × 25-cm column that contains packing L7. The flow rate is about 1.5 mL per minute. The chromatograph is programmed as follows.

Time (minutes)	Solution A (%)	Solution B (%)	Elution
0	100	0	equilibration
0-7.0	100	0	isocratic
7.0-7.1	100→0	0→100	linear gradient
7.1-15	0	100	isocratic
15-15.1	0→100	100→0	linear gradient
15.1-22.0	100	0	isocratic

Chromatograph the Standard solution, and record the peak areas as directed for Procedure: the relative retention times are about 0.3 for 8-chlorotheophylline, 0.5 for the internal standard, and 1.0 for diphenhydramine; the resolution, R, between 8-chlorotheophylline and the internal standard is not less than 4.5; and the relative standard deviation for replicate injections is not more than 2.0% (ERR 1-Nov-2021)

Test solution—Prepare as directed for Assay preparation in the Assay.

Procedure—Separately inject equal volumes (about 10 μ L) of the *Standard solution* and the *Test solution* into the chromatograph, record the chromatograms, and measure the areas for the major peaks. Calculate the quantity, in mg per mL, of 8-chlorotheophylline ($C_7H_7CIN_4O_2$) in the portion of Oral Solution taken by the formula:

 $(214.61/469.96)(0.05W)(R_{I}/R_{c})$

in which 214.61 and 469.96 are the molecular weights of 8-chlorotheophylline and dimenhydrinate, respectively; W is the weight, in mg, of <u>USP Dimenhydrinate RS</u> in the *Standard solution*; and R_{ij} and R_{g} are peak area ratios of 8-chlorotheophylline to the internal standard obtained

from the *Test solution* and the *Standard solution*, respectively. An amount of 8-chlorotheophylline that is between 43.4% and 47.9% of the amount of dimenhydrinate obtained in the *Assay* is found.

ALCOHOL DETERMINATION (611): between 4.0% and 6.0% of C₂H_EOH.

Change to read:

Assay-

Ammonium bicarbonate solution — Dissolve 4 q of ammonium bicarbonate in 250 mL of water

Diluent-Dissolve 4 g of ammonium bicarbonate in 200 mL of water. Add 50 mL of methanol, and mix.

Solution A-Dissolve 0.8 g of ammonium bicarbonate in 800 mL of water. Add 200 mL of methanol, filter, and degas.

Solution B—Dissolve 0.8 g of ammonium bicarbonate in 150 mL of water. Add 850 mL of methanol, filter, and degas.

Mobile phase—Use variable mixtures of Solution A and Solution B as directed for Chromatographic system. Make adjustments if necessary (see <u>System Suitability</u> under <u>Chromatography (621)</u>)

Internal standard solution—Prepare a solution in methanol containing 2.0 mg of 2-hydroxybenzyl alcohol per mL.

Standard preparation—Accurately weigh about 50 mg of <u>USP Dimenhydrinate RS</u>, add about 5 mL of *Ammonium bicarbonate solution* and 20.0 mL of *Internal standard solution*, and mix. To 1 mL of this solution add about 9 mL of *Diluent*, and mix.

Chromatographic system (see Chromatography (621))— The liquid chromatograph is equipped with a 229-nm detector and a 4.6-mm × 25-cm column that contains packing L7. The flow rate is about 1.5 mL per minute. The chromatograph is programmed as follows.

Time (minutes)	Solution A (%)	Solution B (%)	Elution
0	100	0	equilibration
0-7.0	100	0	isocratic
7.0-7.1	100→0	0→100	linear gradient
7.1–15	0	100	isocratic
15-15.1	0→100	100→0	linear gradient
15.1-22.0	100	0	isocratic

Chromatograph the Standard preparation, and record the peak areas as directed for Procedure: the relative retention times are about 0.3 for 8-chlorotheophylline, 0.5 for the internal standard, and 1.0 for diphenhydramine; the resolution, R, between 8-chlorotheophylline and the internal standard is not less than 4.5; and the relative standard deviation for replicate injections is not more than 2.0%. (ERR 1-Nov-2021)

Assay preparation—Pipet 5.0 mL of Oral Solution into a suitable container, add 5.0 mL of Internal standard solution, and mix. Transfer about 1 mL of this solution to a suitable container, add about 5 mL of Diluent, and mix.

 $Procedure- \triangle$ Separately inject equal volumes (about 10 µL) of the Standard preparation and the Assay preparation into the chromatograph, record the chromatograms, and measure the areas for the major peaks. \triangle (ERR 1-Nov-2021) Calculate the quantity, in mg per mL, of dimenhydrinate ($C_{17}H_{21}NO \cdot C_7H_7CIN_4O_2$) in the portion of the Oral Solution taken by the formula:

$0.05W(R_1/R_s)$

in which W is the weight, in mg, of <u>USP Dimenhydrinate RS</u> in the *Standard preparation*; and $R_{_{\it U}}$ and $R_{_{\it S}}$ are the peak area ratios of diphenhydramine to the internal standard obtained from the *Assay preparation* and the *Standard preparation*, respectively.

Auxiliary Information - Please <u>check for your question in the FAQs</u> before contacting USP

Topic/Question	Contact	Expert Committee
DIMENHYDRINATE ORAL SOLUTION	Documentary Standards Support	SM32020 Small Molecules 3

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 45(3)

Current DocID: GUID-DA5F67E4-3505-4BCE-87CE-98DAD3D62E73_2_en-US

DOI: https://doi.org/10.31003/USPNF_M26410_02_01

DOI ref: 0d1p5