Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-Dec-2021
Document Type: USP Monographs
DocId: GUID-D6A06372-BEF4-49F4-8965-2B326B73DF82_4_en-US
DOI: https://doi.org/10.31003/USPNF_M21480_04_01
DOI Ref: qi3xg

© 2025 USPC Do not distribute

Cyclosporine

 $C_{62}H_{111}N_{11}O_{12}$ 1202.61

Cyclo[[(E)-(2S,3R,4R)-3-hydroxy-4-methyl-2-(methylamino)oct-6-enoyl]-L-2-aminobutyryl-N-methylglycyl-N-methyl-L-leucyl-L-valyl-N-methyl-L-leucyl-N-meth

 $[R-[R^*,R^*-(E)]]$ -Cyclic(ι -alanyl- ι -alanyl- ι -nethyl- ι -leucyl- ι -methyl- ι -nethyl- ι -methyl- ι -nethyl- ι -methyl- ι -nethyl- ι -n

DEFINITION

Cyclosporine contains NLT 97.0% and NMT 101.5% of cyclosporine A $(C_{62}H_{111}N_{11}O_{12})$, calculated on the dried basis.

IDENTIFICATION

Add the following:

▲ A. Spectroscopic Identification Tests (197), Infrared Spectroscopy: 197A or 197K (USP 1-Dec-2021)

Change to read:

• **AB.** (USP 1-Dec-2021) The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.

ASSAY

Change to read:

• Procedure

Mobile phase: Acetonitrile, tert-butyl methyl ether, water, and phosphoric acid (430:50:520:1)

Diluent: Acetonitrile and water (1:1)

System suitability solution: 1.25 mg/mL of USP Cyclosporine Resolution Mixture RS in Diluent

Standard solution: 1.25 mg/mL of USP Cyclosporine RS in Diluent

Sample solution: 1.25 mg/mL of Cyclosporine in Diluent

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 4-mm × 25-cm; 3- to 5-μm packing <u>L1</u>. [≜]If needed, tubing may be_{≜ (USP 1-Dec-2021)} connected to the column inlet [≜]to support the *Column temperature*. _{≜ (USP 1-Dec-2021)}

Column temperature: 80°. ▲If used, (USP 1-Dec-2021) the tubing ▲may be (USP 1-Dec-2021) maintained at 80°, to ensure that the *Mobile phase* entering the column is heated to 80°.

Flow rate: 1.2 mL/min Injection volume: 20 μL

System suitability

Samples: System suitability solution and Standard solution

[Note—The relative retention times for cyclosporine U and cyclosporine are 0.95 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 1.0 between cyclosporine U and cyclosporine, System suitability solution

Relative standard deviation: NMT 1.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of cyclosporine $(C_{60}H_{111}N_{11}O_{12})$ in the portion of Cyclosporine taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times P \times 100$$

 r_{ij} = peak area of cyclosporine from the Sample solution

 r_s = peak area of cyclosporine from the Standard solution

 C_s = concentration of ΔUSP Cyclosporine RS in $\Delta (USP 1-Dec-2021)$ the Standard solution (mg/mL)

 C_U = concentration of \triangle Cyclosporine in \triangle (USP 1-Dec-2021) the Sample solution (mg/mL)

P = potency of cyclosporine in <u>USP Cyclosporine RS</u> (mg/mg)

Acceptance criteria: 97.0%-101.5% on the dried basis

IMPURITIES

Change to read:

• ORGANIC IMPURITIES

Mobile phase, Diluent, System suitability solution, Sample solution, and Chromatographic system: Proceed as directed in the Assay. Standard solution: 0.01 mg/mL of USP Cyclosporine RS in Diluent

System suitability

Samples: System suitability solution and Standard solution

[Note—The relative retention times for cyclosporine U and cyclosporine are 0.95 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 1.0 between cyclosporine U and cyclosporine, System suitability solution

Relative standard deviation: NMT 10.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of ▲any individual ▲ (USP 1-Dec-2021) impurity in the portion of Cyclosporine taken:

Result =
$$(r_{ij}/r_{s}) \times (C_{s}/C_{ij}) \times P \times 100$$

r_U = peak area of ≜each_{▲ (USP 1-Dec-2021)} individual impurity from the Sample solution

 r_s = peak area of cyclosporine from the Standard solution

 C_s = concentration of ΔUSP Cyclosporine RS in (USP 1-Dec-2021) the Standard solution (mg/mL)

 C_U = concentration of \triangle Cyclosporine in $_{\triangle}$ (USP 1-Dec-2021) the Sample solution (mg/mL)

P = potency of cyclosporine in <u>USP Cyclosporine RS</u> (mg/mg)

Acceptance criteria: The reporting threshold is 0.05%.

Any individual impurity: NMT 0.7% **Total impurities:** NMT 1.5%

SPECIFIC TESTS

Change to read:

• Loss on Drying (731)

Analysis: Dry in a capillary-stoppered bottle under vacuum at a pressure not exceeding 5 mm of mercury at 60° for 3 h.

Acceptance criteria: NMT 2.0%

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in tight, light-resistant containers.

Change to read:

• USP REFERENCE STANDARDS (11)

USP Cyclosporine RS

USP Cyclosporine Resolution Mixture RS

Contains a mixture of the following two compounds [in a 100:1 (w/w) mixture of cyclosporine and cyclosporine U]:

Cyclosporine.

Cyclosporine U: \triangle Cyclo[[(E)-(2S,3R,4R)-3-hydroxy-4-methyl-2-(methylamino)oct-6-enoyl]-L-2-aminobutyryl-N-methylglycyl-N-methyl-L-leucyl-L-valyl]. \triangle (USP 1-Dec-2021)

$$C_{61}H_{109}N_{11}O_{12}$$
 -1188.61 (USP 1-Dec-2021)

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
CYCLOSPORINE	Documentary Standards Support	SM12020 Small Molecules 1

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 46(4)

Current DocID: GUID-D6A06372-BEF4-49F4-8965-2B326B73DF82_4_en-US

DOI: https://doi.org/10.31003/USPNF_M21480_04_01

DOI ref: qi3xg