Status: Currently Official on 14-Feb-2025
Official Date: Official Prior to 2013
Document Type: USP Monographs
DocId: GUID-8ACE0534-631B-4186-BE92-364DA61A7C31_2_en-US
DOI: https://doi.org/10.31003/USPNF_M21488_02_01
DOI Ref: jwj0s

© 2025 USPC Do not distribute

Cyclosporine Oral Solution

DEFINITION

Cyclosporine Oral Solution is a solution of Cyclosporine in a suitable vehicle. It contains NLT 90.0% and NMT 110.0% of the labeled amount of cyclosporine ($C_{c_2}H_{111}N_{11}O_{12}$).

IDENTIFICATION

• A. THIN-LAYER CHROMATOGRAPHY

Solution A: 17 mg/mL of bismuth subnitrate in 20% acetic acid

Solution B: 400 mg/mL of potassium iodide **Diluent:** Methanol and chloroform (4:1)

Standard solution: 1 mg/mL of USP Cyclosporine RS in Diluent

Sample solution: Nominally 1 mg/mL of cyclosporine from Oral Solution in Diluent

Chromatographic system

(See Chromatography (621), Thin-Layer Chromatography.)

Adsorbent: 0.25-mm layer of chromatographic silica gel mixture

Application volume: 10 µL

Developing solvent system 1: Ethyl ether

Developing solvent system 2: Ethyl acetate, methyl ethyl ketone, water, and formic acid (60:40:2:1)

Spray reagent 1: Mix 5 mL of Solution A with 5 mL of Solution B and 20 mL of glacial acetic acid, and dilute with water to 100 mL. Prepare

freshly.

Spray reagent 2: Hydrogen peroxide TS

Analysis

Samples: Standard solution and Sample solution

Apply the *Standard solution* and the *Sample solution* to the plate. Allow the spots to dry in a current of air, place the plate in a suitable chromatographic chamber, and develop the chromatogram, using *Developing solvent system 1*, until the solvent front has moved about three-fourths of the length of the plate. Remove the plate from the chamber, mark the solvent front, and allow it to dry. Place the plate in a second chromatographic chamber, and develop the chromatogram in *Developing solvent system 2* until the solvent front has moved about three-fourths of the length of the plate. Remove the plate from the chamber, and allow it to dry. Spray the plate with *Spray reagent 1*. Immediately again spray the plate with *Spray reagent 2*. Cyclosporine appears as a brown spot having an *R_c* value of about 0.45.

Acceptance criteria: The R_F value of the principal spot of the *Sample solution* corresponds to that of the *Standard solution*. Disregard any spots at the origin.

• B. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

Procedure

Mobile phase: Acetonitrile, methanol, water, and phosphoric acid (550:50:400:0.5)

Diluent: Methanol and chloroform (4:1)

Standard solution: 1 mg/mL of USP Cyclosporine RS in Diluent. Use this solution promptly after preparation.

Sample solution: Nominally 1 mg/mL of cyclosporine from Oral Solution in Diluent. Use this solution promptly after preparation.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 25-cm; packing L16

Column temperature: 50° Flow rate: 1 mL/min Injection volume: $10 \, \mu L$

System suitability

Sample: Standard solution
Suitability requirements
Capacity factor: 3-10

Column efficiency: NLT 700 theoretical plates

Tailing factor: NMT 1.5

Relative standard deviation: NMT 1.5%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of cyclosporine (C₆,H₁₁₁N₁₁O₁₂) in the portion of Oral Solution taken:

Result =
$$(r_{ij}/r_{s}) \times (C_{s}/C_{ij}) \times 100$$

 r_{ij} = peak response from the Sample solution

 $r_{\rm s}$ = peak response from the Standard solution

 C_s = concentration of the Standard solution (mg/mL)

 C_{II} = nominal concentration of the Sample solution (mg/mL)

Acceptance criteria: 90.0%-110.0%

OTHER COMPONENTS

• CONTENT OF ALCOHOL (where present)

Internal standard solution: *n*-Propyl alcohol and butyl alcohol (3:50) **Standard stock solution:** 50 mg/mL of dehydrated alcohol in butyl alcohol

Standard solution: 10 mg/mL of alcohol, prepared as follows. Transfer a suitable aliquot of *Standard stock solution* to a suitable volumetric flask. Add *Internal standard solution*, using 24% of the final volume, and dilute with butyl alcohol to volume.

Sample solution: Nominally 10 mg/mL of alcohol from Oral Solution, prepared as follows. Transfer a suitable aliquot of Oral Solution to a suitable volumetric flask. Add *Internal standard solution*, using 24% of the final volume, and dilute with butyl alcohol to volume.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: GC

Detector: Flame ionization

Column: 2-mm × 2-m glass; packed with support S3

Temperatures

Injection port: 280°

Detector: 290°

Column: See <u>Table 1</u>.

Table 1

Initial Temperature (°)	Temperature Ramp (°/min)	Final Temperature (°)	Hold Time at Final Temperature (min)
145	0	145	8
145	32	270	0

Carrier gas: Nitrogen Flow rate: 35 mL/min

Injection volume: 1 µL. [Note—Make adjustments if necessary to obtain satisfactory chromatography.]

System suitability

Sample: Standard solution. [Note—The elution order is alcohol, n-propyl alcohol, and butyl alcohol.]

Suitability requirements

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of alcohol (C₂H₅OH) in the portion of Oral Solution taken:

Result =
$$(R_{I}/R_{\odot}) \times (C_{\odot}/C_{IJ}) \times 100$$

 R_{ij} = peak area ratio of alcohol to *n*-propyl alcohol from the Sample solution

 R_s = peak area ratio of alcohol to *n*-propyl alcohol from the Standard solution

C_s = concentration of the Standard solution (mg/mL)

 C_{II} = concentration of the Sample solution (mg/mL)

Acceptance criteria: 80.0%-120.0% of the labeled amount

PERFORMANCE TESTS

- UNIFORMITY OF DOSAGE UNITS (905): Meets the requirements for oral solution packaged in single-unit containers
- Deliverable Volume (698): Meets the requirements for oral solution packaged in multiple-unit containers

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in tight containers.
- USP REFERENCE STANDARDS (11)

USP Cyclosporine RS

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
CYCLOSPORINE ORAL SOLUTION	Documentary Standards Support	SM12020 Small Molecules 1

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 43(1)

Current DocID: GUID-8ACE0534-631B-4186-BE92-364DA61A7C31_2_en-US Previous DocID: GUID-8ACE0534-631B-4186-BE92-364DA61A7C31_1_en-US

DOI: https://doi.org/10.31003/USPNF_M21488_02_01

DOI ref: jwj0s