Status: Currently Official on 17-Feb-2025
Official Date: Official as of 01-May-2018
Document Type: USP Monographs
DocId: GUID-0C3074D7-E473-4EAC-86DC-84923E0645FF_3_en-US
DOI: https://doi.org/10.31003/USPNF_M17980_03_01
DOI Ref: 0qg8z

© 2025 USPC Do not distribute

Citric Acid, Magnesium Oxide, and Sodium Carbonate Irrigation

DEFINITION

Citric Acid, Magnesium Oxide, and Sodium Carbonate Irrigation is a sterile solution of Citric Acid, Magnesium Oxide, and Sodium Carbonate in Water for Injection. It contains NLT 95.0% and NMT 105.0% of the labeled amounts of citric acid ($C_6H_8O_7 \cdot H_2O$), magnesium oxide (MgO), and sodium carbonate (Na₂CO₂).

IDENTIFICATION

• A. IDENTIFICATION TESTS—GENERAL, Sodium(191) and Magnesium(191)

• B.

Sample solution: 10 mL of Irrigation

Analysis: Add 1 mL of mercuric sulfate TS to the *Sample solution*, heat to boiling, and add a few drops of potassium permanganate TS. **Acceptance criteria:** A white precipitate is formed.

ASSAY

• CITRIC ACID

Mobile phase, Standard preparation 1, and **Chromatographic system:** Proceed as directed in <u>Assay for Citric Acid/Citrate and Phosphate</u> (345).

Assay preparation for citric acid/citrate assay: Nominally 20 µg/mL of citrate from Irrigation in 1 mM of sodium hydroxide prepared as follows. Transfer a suitable volume of Irrigation to an appropriately sized volumetric flask, and proceed as directed in <u>Assay for Citric Acid/Citrate and Phosphate (345),Sample solution (for the assay of citric acid/citrate)</u>.

Analysis

Samples: Standard preparation 1 and Assay preparation for citric acid/citrate assay

Proceed as directed in Assay for Citric Acid/Citrate and Phosphate (345), Procedure.

Calculate the percentage of the labeled amount of citric acid monohydrate $(C_EH_aO_T \cdot H_2O)$ in the portion of Irrigation taken:

Result =
$$(r_1/r_s) \times (C_s/C_{11}) \times (M_{r1}/M_{r2}) \times 100$$

 r_{ij} = peak response of citrate from the Assay preparation for citric acid/citrate assay

 $r_{\rm s}$ = peak response of citrate from Standard preparation 1

 C_s = concentration of Standard preparation 1 (µg/mL)

C, = nominal concentration of citric acid monohydrate in the Assay preparation for citric acid/citrate assay (µg/mL)

 M_{r_1} = molecular weight of citric acid monohydrate, 210.14

 M_{r2} = molecular weight of citrate, 189.10

Acceptance criteria: 95.0%-105.0%

MAGNESIUM OXIDE

Sample solution: A volume of Irrigation, nominally equivalent to 40 mg of magnesium oxide

Analysis: Transfer the *Sample solution* to a beaker containing 130 mL of water heated to 75° ± 5°, and add 4 mL of ammonium chloride TS and then 5 mL of ammonium hydroxide. Mix, and add slowly, with stirring, 8 mL of 8-hydroxyquinoline TS. After allowing to stand for 30 min at 75°, filter through a sintered-glass crucible, previously dried and weighed. Wash the precipitate with 50 mL of a warm mixture of water and 6 N ammonium hydroxide (45:5), followed by 50 mL of cool water. Dry the crucible and contents at 105° for 3 h, cool, and weigh.

Determine the equivalent of magnesium oxide (MgO) in the portion of Irrigation taken by multiplying the weight of the C₁₈H₁₂MgN₂O₂·2H₂O so obtained by 0.1156 (mg of MgO).

Calculate the percentage of the labeled amount of magnesium oxide (MgO) in the portion of Irrigation taken.

Acceptance criteria: 95.0%-105.0%

• SODIUM CARBONATE

 $\textbf{Sodium chloride stock solution:} \ 4.75 \ \text{mg/mL of sodium chloride, previously dried at } 105^{\circ} \ \text{for } 2 \ \text{h, in water}$

Internal standard solution: 0.636 mg/mL of lithium chloride in water

Standard solution: 0.0475 mg/mL of sodium chloride and 0.6296 mg/mL of lithium chloride prepared from an appropriate mixture of *Sodium* chloride stock solution and *Internal standard solution*

Sample stock solution: Nominally equivalent to 4.4 mg/mL of sodium carbonate from Irrigation diluted with water

Sample solution: 0.044 mg/mL of sodium carbonate and 0.6296 mg/mL of lithium chloride prepared from an appropriate mixture of *Sample stock solution* and *Internal standard solution*

Instrumental conditions

Mode: Flame photometer

Analytical wavelengths: 591 and 671 nm

Analysis

Samples: Internal standard solution, Standard solution, and Sample solution

Concomitantly determine the emittances of the *Standard solution* and the *Sample solution*, adjusting the instrument with *Internal standard solution* to zero emittance.

Calculate the percentage of the labeled amount of sodium carbonate (Na, CO,) in the portion of Irrigation taken:

Result =
$$(r_{U,591}/r_{U,671}) \times (r_{S,671}/r_{S,591}) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

 $r_{_{U,591}}$ = emittance reading from the Sample solution at 591 nm

 $r_{U.671}$ = emittance reading from the Sample solution at 671 nm

 $r_{s,671}$ = emittance reading from the Standard solution at 671 nm

 $r_{s,591}$ = emittance reading from the Standard solution at 591 nm

 C_S = concentration of sodium chloride in the Standard solution (mg/mL)

 C_U = nominal concentration of sodium carbonate in the Sample solution (mg/mL)

 M_{r1} = molecular weight of sodium carbonate, 105.99

 M_{c2} = two times the molecular weight of sodium chloride, 116.88

Acceptance criteria: 95.0%-105.0%

SPECIFIC TESTS

- <u>PH (791)</u>: 3.8-4.2
- BACTERIAL ENDOTOXINS TEST (85): It contains not more than 2.80 USP Endotoxin Units per mL.
- OTHER REQUIREMENTS: It meets the requirements in <u>Injections and Implanted Drug Products (1)</u>, except that the container may be designed to empty rapidly and may exceed 1000 mL in capacity.

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in single-dose containers, preferably of Type I or Type II glass.

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
CITRIC ACID, MAGNESIUM OXIDE, AND SODIUM CARBONATE IRRIGATION	Documentary Standards Support	SM12020 Small Molecules 1
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM12020 Small Molecules 1

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 31(2)

Current DocID: GUID-0C3074D7-E473-4EAC-86DC-84923E0645FF_3_en-US Previous DocID: GUID-0C3074D7-E473-4EAC-86DC-84923E0645FF_1_en-US

DOI: https://doi.org/10.31003/USPNF_M17980_03_01

DOI ref: 0qg8z