Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-FD839E67-E5AC-4665-9323-0E4DD834EA37_2_en-US
DOI: https://doi.org/10.31003/USPNF_M17895_02_01
DOI Ref: oo2d7

© 2025 USPC Do not distribute

Cisapride

C₂₃H₂₉CIFN₃O₄ 465.95

Benzamide, 4-amino-5-chloro-N-[1-[3-(4-fluorophen oxy)propyl]-3-methoxy-4-piperidinyl]-2-methoxy-, cis-.

cis-4-Amino-5-chloro-N-[1-[3-(p-fluorophenoxy)propyl]-3-methoxy-4-piperidyl]-o-anisamide CAS RN[®]: 81098-60-4; UNII: UVL329170W. Monohydrate 484.0 CAS RN[®]: 260779-88-2; UNII: VZV0A4I38W.

» Cisapride contains not less than 99.0 percent and not more than 101.0 percent of C₂₃H₂₀CIFN₃O₄, calculated on the anhydrous basis.

Packaging and storage—Preserve in well-closed, light- resistant containers, and store at room temperature.

USP REFERENCE STANDARDS (11)-

USP Cisapride RS
USP Haloperidol RS

COMPLETENESS OF SOLUTION (641)—A solution, 10 mg per mL in methylene chloride, meets the requirements.

Change to read:

Identification, Spectroscopic Identification Tests (197), Infrared Spectroscopy: 197K (CN 1-May-2020)

Specific rotation (781S): between -10° and +10°, measured at 20°.

Test solution: 10 mg per mL, in methylene chloride.

WATER DETERMINATION, Method I (921): between 3.4% and 4.0%.

RESIDUE ON IGNITION (281): not more than 0.1%.

Chromatographic purity-

Solution A—Prepare a 20 g per L solution of tetrabutylammonium hydrogen sulfate in water.

Solution B-Use methanol.

Mobile phase—Use variable mixtures of Solution A and Solution B as directed for Chromatographic system. Make adjustments if necessary (see System Suitability under Chromatography (621)).

Blank solution-Use methanol.

System suitability solution—Prepare a solution of <u>USP Cisapride RS</u> and <u>USP Haloperidol RS</u> in methanol containing about 0.05 mg per mL and 0.4 mg per mL, respectively.

Test solution 1—Dissolve an accurately weighed quantity of Cisapride, in methanol to obtain a solution having a known concentration of about 10 mg per mL.

Test solution 2—Dilute quantitatively and stepwise Test solution 1 in methanol to obtain a solution having a known concentration of about 0.05 mg per mL.

Chromatographic system (see <u>Chromatography (621)</u>)—The liquid chromatograph is equipped with a 275-nm detector and a 4.0-mm × 10-cm column that contains 3-µm base-deactivated packing L1. The flow rate is about 1.2 mL per minute. The chromatograph is programmed as follows.

Time (minutes)	Solution A (%)	Solution B (%)	Elution
0-20	80→55	20→45	linear gradient

https://trumgtamthuoc.com/

USP-NF Cisapride

Time (minutes)	Solution A (%)	Solution B (%)	Elution
20-21	55→5	45→95	linear gradient
21-25	5	95	isocratic
25-26	5→80	95→20	return to initial conditions
26-30	80	20	re-equilibration

Chromatograph the *System suitability solution*, and record the peak responses as directed for *Procedure*: the order of elution is cisapride followed by haloperidol, the resolution, *R*, between these two peaks is not less than 2.5; and the relative standard deviation for replicate injections is not more than 2.0% for the cisapride peak.

Procedure—Inject a volume (about 10 μL) of the Blank solution, Test solution 1, and Test solution 2 into the chromatograph, record the chromatograms, and measure the peak areas. Calculate the percentage of cisapride impurities in the portion of Cisapride taken by the formula:

$$100(C_{S}/C_{i})(r_{i}/r_{S})$$

in which C_s and C_i are the concentration of cisapride, in mg per mL, of *Test solution 2* and *Test solution 1*, respectively; r_i is the individual peak response of cisapride inpurities in *Test solution 1*; and r_s is cisapride peak area in *Test solution 2*: not more than 0.5% of any cisapride impurity is found, and not more than 1.0% of total impurities is found. Disregard any peak also found in the *Blank solution* and any peak with an area less than 0.1 times the area of the principal peak in the *Test solution 2* chromatogram.

Assay—Dissolve about 0.350 g of Cisapride, accurately weighed, in 70 mL of a mixture of methyl ethyl ketone and acetic acid (7:1). Titrate with 0.1 N perchloric acid VS, determining the endpoint potentiometrically. Perform a blank determination, and make any necessary correction (see $\underline{Titrimetry}$ (541)). Each mL of 0.1 N perchloric acid is equivalent to 46.60 mg of $C_{23}H_{20}CIFN_3O_4$.

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
CISAPRIDE	Documentary Standards Support	SM32020 Small Molecules 3

Chromatographic Database Information: <u>Chromatographic Database</u>

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 34(2)

Current DocID: GUID-FD839E67-E5AC-4665-9323-0E4DD834EA37_2_en-US

DOI: https://doi.org/10.31003/USPNF_M17895_02_01

DOI ref: oo2d7