Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-F791BB36-9ED2-4A44-87BE-8AD19A0C4F0D_4_en-US
DOI: https://doi.org/10.31003/USPNF_M17870_04_01
DOI Ref: 33op5

© 2025 USPC Do not distribute

Ciprofloxacin Hydrochloride

 $C_{17}H_{18}FN_3O_3 \cdot HCI \cdot xH_2O$

Sesquihydrate 394.83 Monohydrate 385.82 Anhydrous 367.81

3-Quinolinecarboxylic acid, 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-, monohydrochloride;

1-Cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid, monohydrochloride

Monohydrate CAS RN®: 86393-32-0; UNII: 4BA73M5E37.

DEFINITION

Ciprofloxacin Hydrochloride contains NLT 98.0% and NMT 102.0% of ciprofloxacin hydrochloride (C₁₇H₁₈FN₃O₃·HCl), calculated on the anhydrous basis. It contains a variable quantity of water.

IDENTIFICATION

Change to read:

- A. <u>ASPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy: 197K</u> (CN 1-May-2020)
- B. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.
- C. Identification Tests—General (191), Chloride

ASSAY

• PROCEDURE

Buffer: 0.025 M phosphoric acid. Adjust with triethylamine to a pH of 3.0 ± 0.1 .

Mobile phase: Acetonitrile and Buffer (13:87)

Standard solution: 0.5 mg/mL of USP Ciprofloxacin Hydrochloride RS in Mobile phase

System suitability stock solution: 0.025 mg/mL of USP Ciprofloxacin Ethylenediamine Analog RS in Mobile phase

System suitability solution: Transfer 1.0 mL of the *System suitability stock solution* to a 10-mL volumetric flask, and dilute with *Standard solution* to volume.

Sample solution: 0.5 mg/mL of Ciprofloxacin Hydrochloride in *Mobile phase*

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 278 nm

Column: 4.6-mm × 25-cm; packing L1

Column temperature: 30 ± 1°

Flow rate: 1.5 mL/min Injection volume: 10 µL

System suitability

Samples: Standard solution and System suitability solution

[Note—The relative retention times for ciprofloxacin ethylenediamine analog and ciprofloxacin are 0.7 and 1.0, respectively.]

Suitability requirements

https://tithgtamthuoc.com/

Resolution: NLT 6 between ciprofloxacin ethylenediamine analog and ciprofloxacin, System suitability solution

Tailing factor: NMT 2.5, Standard solution

Relative standard deviation: NMT 1.5%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of ciprofloxacin hydrochloride ($C_{17}H_{18}FN_3O_3 \cdot HCI$) in the portion of Ciprofloxacin Hydrochloride taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times 100$$

 r_{ij} = peak area from the Sample solution

 r_s = peak area from the Standard solution

C_s = concentration of <u>USP Ciprofloxacin Hydrochloride RS</u> in the *Standard solution* (mg/mL)

C₁₁ = concentration of Ciprofloxacin Hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: 98.0%-102.0% on the anhydrous basis

IMPURITIES

• Residue on Ignition (281): NMT 0.1%

• Organic Impurities

Buffer: Dilute 3.4 mL of phosphoric acid with water to 2000 mL. Adjust with triethylamine to a pH of 3.0 ± 0.1.

Solution A: Acetonitrile **Mobile phase:** See <u>Table 1</u>.

Table 1

Time (min)	Buffer (%)	Solution A (%)
0	87	13
10	87	13
11	50	50
16	50	50
16.1	87	13
20	87	13

Diluent: Solution A and Buffer (13:87)

System suitability solution: 7.5 µg/mL each of <u>USP Ciprofloxacin Ethylenediamine Analog RS</u> and <u>USP Ciprofloxacin Hydrochloride RS</u> in *Diluent*

Standard stock solution: 0.1 mg/mL each of <u>USP Fluoroquinolonic Acid RS</u> and <u>USP Ciprofloxacin Hydrochloride RS</u> prepared as follows. Add suitable amounts of <u>USP Fluoroquinolonic Acid RS</u> and <u>USP Ciprofloxacin Hydrochloride RS</u> to a suitable volumetric flask. Add 0.1% of the flask volume of 6 M ammonium hydroxide and dilute with water to volume.

Standard solution: 0.7 µg/mL each of <u>USP Fluoroquinolonic Acid RS</u> and <u>USP Ciprofloxacin Hydrochloride RS</u> from *Standard stock solution* in *Diluent*

Sample solution: 0.35 mg/mL of Ciprofloxacin Hydrochloride in Diluent

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 263 and 278 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Column temperature: 40° Flow rate: 1.5 mL/min

https://trumgtamthuoc.com/

System suitability

Samples: System suitability solution and Standard solution

[Note—The relative retention times for ciprofloxacin ethylenediamine analog and ciprofloxacin are 0.7 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 6.0 between ciprofloxacin ethylenediamine analog and ciprofloxacin at 278 nm, System suitability solution

Tailing factor: NMT 2.0 for the ciprofloxacin peak at 278 nm, Standard solution

Relative standard deviation: NMT 5.0% for ciprofloxacin at 278 nm; NMT 5.0% for fluoroquinolonic acid at 263 nm, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of fluoroquinolonic acid in the portion of Ciprofloxacin Hydrochloride taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

r, = peak response of fluoroquinolonic acid at 263 nm from the Sample solution

 r_s = peak response of fluoroquinolonic acid at 263 nm from the Standard solution

 C_s = concentration of <u>USP Fluoroquinolonic Acid RS</u> in the Standard solution (mg/mL)

C₁₁ = concentration of Ciprofloxacin Hydrochloride in the Sample solution (mg/mL)

Calculate the percentage of ciprofloxacin ethylenediamine analog and any individual unspecified impurity in the portion of Ciprofloxacin Hydrochloride taken:

Result =
$$(r_{ij}/r_{s}) \times (C_{s}/C_{ij}) \times 100$$

 r_{μ} = peak response of each impurity at 278 nm from the Sample solution

 r_s = peak response of ciprofloxacin at 278 nm from the Standard solution

C_c = concentration of <u>USP Ciprofloxacin Hydrochloride RS</u> in the Standard solution (mg/mL)

C₁₁ = concentration of Ciprofloxacin Hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: See <u>Table 2</u>. Disregard peaks less than 0.05%.

Table 2

Name	Relative Retention Time	Wavelength (nm)	Acceptance Criteria, NMT (%)
Ciprofloxacin ethylenediamine analog	0.70	278	0.2
Ciprofloxacin	1.00	278	-
Fluoroquinolonic acid	1.89	263	0.2
Any individual unspecified impurity	_	278	0.2
Total impurities ^a	-	-	0.5

^a Total impurities does not include fluoroquinolonic acid impurity.

https://titumgtamthuoc.com/

• **PH** (791)

Sample solution: 25-mg/mL solution in water

Acceptance criteria: 3.0-4.5

• Water Determination (921), Method 1: 4.7%-6.7%

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in tight, light-resistant containers. Store at 25°, excursions permitted between 15° and 30°.

• USP REFERENCE STANDARDS (11)

USP Ciprofloxacin Ethylenediamine Analog RS

1-Cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-[(2-aminoethyl)amino]-3-quinolinecarboxylic acid hydrochloride.

 $C_{15}H_{16}FN_3O_3 \cdot HCI$ 341.77

USP Ciprofloxacin Hydrochloride RS USP Fluoroquinolonic Acid RS

7-Chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid.

C₁₃H₉CIFNO₃ 281.67

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
CIPROFLOXACIN HYDROCHLORIDE <u>Documentary Standards Support</u>		SM12020 Small Molecules 1

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 41(5)

Current DocID: GUID-F791BB36-9ED2-4A44-87BE-8AD19A0C4F0D_4_en-US

DOI: https://doi.org/10.31003/USPNF_M17870_04_01

DOI ref: 330p5