Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-Aug-2015
Document Type: USP Monographs
DocId: GUID-EB86F973-6D47-434C-A7DF-3173959A56BD_2_en-US
DOI: https://doi.org/10.31003/USPNF_M4716_02_01
DOI Ref: cq35h

© 2025 USPC Do not distribute

Ciprofloxacin Extended-Release Tablets

DEFINITION

Ciprofloxacin Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of ciprofloxacin (C₁₇H₁₈FN₂O₃).

IDENTIFICATION

• A. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer: Dilute 2.9 mL of phosphoric acid in water to 1000 mL. Adjust with triethylamine to a pH of 3.0.

Mobile phase: Acetonitrile and Buffer (135:865)

System suitability solution: 0.58 mg/mL of USP Ciprofloxacin Hydrochloride RS and 0.5 mg/mL of USP Ciprofloxacin Ethylenediamine

Analog RS in Mobile phase

Standard stock solution: 1.16 mg/mL of USP Ciprofloxacin Hydrochloride RS in Mobile phase

Standard solution: 0.058 mg/mL of USP Ciprofloxacin Hydrochloride RS in Mobile phase from Standard stock solution

Sample stock solution: Nominally 0.5 mg/mL in *Mobile phase* prepared as follows. Transfer an equivalent to 250 mg of ciprofloxacin from finely powdered Tablets (NLT 20) to a 500-mL volumetric flask. Add 400 mL of *Mobile phase*, place on a rotary shaker for 15 min, and sonicate for 25 min. Allow the solution to cool to room temperature, and dilute with *Mobile phase* to volume. Pass a portion of the solution through a suitable filter of 0.45-µm pore size.

Sample solution: Nominally 0.05 mg/mL of ciprofloxacin in water from Sample stock solution

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 278 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Column temperature: 30° Flow rate: 1.5 mL/min Injection volume: 10 µL

System suitability

Samples: System suitability solution and Standard solution

Suitability requirements

Resolution: NLT 6 between the ciprofloxacin and ciprofloxacin ethylenediamine analog peaks, System suitability solution

Tailing factor: NMT 4.0 for the ciprofloxacin peak, *System suitability solution* **Relative standard deviation:** NMT 2.0% for the ciprofloxacin peak, *Standard solution*

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of ciprofloxacin (C₁₇H₁₀FN₂O₂) in the portion of Tablets taken:

Result =
$$(r_{11}/r_{S}) \times (C_{S}/C_{11}) \times (M_{r1}/M_{r2}) \times 100$$

 r_{ij} = peak response of ciprofloxacin from the Sample solution

r = peak response of ciprofloxacin from the Standard solution

C_s = concentration of USP Ciprofloxacin Hydrochloride RS in the Standard solution (mg/mL)

 C_{ij} = nominal concentration of ciprofloxacin in the Sample solution (mg/mL)

 M_{r_1} = molecular weight of ciprofloxacin, 331.34

 M_{\odot} = molecular weight of anhydrous ciprofloxacin hydrochloride, 367.81

Acceptance criteria: 90.0%-110.0%

PERFORMANCE TESTS

• Dissolution (711)

Test 1

Medium: pH 4.5 acetate buffer (transfer 3 g of sodium acetate and 14 mL of 2 N acetic acid to a 1-L volumetric flask, and dilute with water to volume); 900 mL, deaerated

Apparatus 2: 50 rpm **Times:** 30, 60, and 120 min

Standard solution: 6.5 µg/mL of USP Ciprofloxacin Hydrochloride RS in Medium

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size. For 500-mg Tablets, transfer 2 mL of the filtrate to a 200-mL volumetric flask, and dilute with *Medium* to volume. For 1000-mg Tablets, transfer 1 mL of the filtrate to a 200-mL volumetric flask, and dilute with *Medium* to volume. Replace the aliquots withdrawn for analysis with fresh portions of *Medium*.

Instrumental conditions

Mode: UV

Analytical wavelength: 277 nm

Blank: Medium

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of ciprofloxacin $(C_{17}H_{19}FN_3O_3)$ dissolved at each time interval (D_i) :

$$D_i = (A_{II}/A_S) \times (C_S/L) \times (M_{r1}/M_{r2}) \times V \times D \times 100$$

A,, = absorbance of the Sample solution

A_s = absorbance of the Standard solution

C_s = concentration of ciprofloxacin hydrochloride in the Standard solution (mg/mL)

L = label claim (mg/Tablet)

M₋₁ = molecular weight of ciprofloxacin, 331.34

 M_{c2} = molecular weight of anhydrous ciprofloxacin hydrochloride, 367.81

V = volume of Medium, 900 mL

D = dilution factor of the Sample solution

Percentage of ciprofloxacin dissolved at the first time interval = D_1

Percentage of ciprofloxacin dissolved at the second time interval = $D_2 + [D_1 \times (v/V)]$

Percentage of ciprofloxacin dissolved at the third time interval = $D_2 + [(D_2 + D_1) \times (v/V)]$

v = volume of solution under test removed at each time interval (mL)

Tolerances

For Tablets labeled to contain 500 mg, see <u>Table 1</u>.

Table 1

Time (min)	Amount Dissolved
30	42%-62%
60	62%-87%

USP-NF Ciprofloxacin Extended-Release Tablets

https://trumgtamthuoc.com/

Time (min)	Amount Dissolved
120	NLT 80%

For Tablets labeled to contain 1000 mg, see <u>Table 2</u>.

Table 2

Time (min)	Amount Dissolved
30	30%-50%
60	50%-70%
120	NLT 80%

The percentages of the labeled amount of ciprofloxacin (C₁₇H₁₈FN₃O₃) dissolved at the times specified conform to <u>Acceptance Table 2</u> in <u>Dissolution (711)</u>.

Test 2: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 2.

Medium: 0.1 N hydrochloric acid; 900 mL

Apparatus 2: 50 rpm Times: 30, 60, and 120 min

Standard solution: 0.62 mg/mL of USP Ciprofloxacin Hydrochloride RS in Medium

Sample solution: Pass a portion of the solution under test through a suitable filter. Dilute with Medium to a concentration similar to the

Standard solution, if necessary.

Instrumental conditions

Mode: UV

Analytical wavelength: 276 nm

Cell length: 0.1 mm **Blank:** *Medium*

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of ciprofloxacin $(C_{17}H_{18}FN_3O_3)$ dissolved at each time interval (D_i) :

$$D_i = (A_{iJ}/A_S) \times (C_S/L) \times (M_{r1}/M_{r2}) \times V \times D \times 100$$

 A_{ij} = absorbance of the Sample solution

A_s = absorbance of the Standard solution

 $C_{_{\mathrm{S}}}$ = concentration of ciprofloxacin hydrochloride in the Standard solution (mg/mL)

L = label claim (mg/Tablet)

 M_{r_1} = molecular weight of ciprofloxacin, 331.34

 M_{\odot} = molecular weight of anhydrous ciprofloxacin hydrochloride, 367.81

V = volume of Medium, 900 mL

D = dilution factor of the Sample solution

Percentage of ciprofloxacin dissolved at the first time interval = D_1

Percentage of ciprofloxacin dissolved at the second time interval = $D_2 + [D_1 \times (v/V)]$

Percentage of ciprofloxacin dissolved at the third time interval = $D_3 + [(D_2 + D_1) \times (v/V)]$

v = volume of solution under test removed at each time interval (mL)

https://tifumgtamthuoc.com/ Tolerances: See <u>Table 3</u>.

Table 3

Time Point (i)	Time (min)	Amount Dissolved
1	30	40%-65%
2	60	NLT 60%
3	120	NLT 80%

The percentages of the labeled amount of ciprofloxacin (C₁₇H₁₈FN₃O₃) dissolved at the times specified conform to <u>Acceptance Table 2</u> in <u>Dissolution (711)</u>.

Test 3: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 3.

Medium: 0.1 N hydrochloric acid; 900 mL

Apparatus 2: 50 rpm **Times:** 30, 60, and 120 min

Standard solution: 0.65 mg/mL of USP Ciprofloxacin Hydrochloride RS in Medium

Sample solution: Pass a portion of the solution under test through a suitable filter. Dilute with Medium to a concentration similar to the

Standard solution, if necessary.

Instrumental conditions

Mode: UV

Analytical wavelength: 350 nm

Cell length

For 500-mg Tablet strength: 2 mm For 1000-mg Tablet strength: 1 mm

Blank: Medium

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of ciprofloxacin $(C_{17}H_{19}FN_2O_3)$ dissolved at each time interval (D_i) :

$$D_i = (A_{ij}/A_s) \times (C_s/L) \times (M_{r1}/M_{r2}) \times V \times D \times 100$$

A,, = absorbance of the Sample solution

A_s = absorbance of the Standard solution

C_s = concentration of USP Ciprofloxacin Hydrochloride RS in the Standard solution (mg/mL)

L = label claim (mg/Tablet)

 M_{r1} = molecular weight of ciprofloxacin, 331.34

 M_{\odot} = molecular weight of anhydrous ciprofloxacin hydrochloride, 367.81

V = volume of Medium, 900 mL

D = dilution factor of the Sample solution

Percentage of ciprofloxacin dissolved at the first time interval = D_1

Percentage of ciprofloxacin dissolved at the second time interval = $D_2 + [D_1 \times (v/V)]$

Percentage of ciprofloxacin dissolved at the third time interval = $D_3 + [(D_2 + D_1) \times (v/V)]$

v = volume of solution under test removed at each time interval (mL)

Tolerances: See Table 4.

https://trumgtamthuoc.com/

Time Point (i)	Time (min)	Amount Dissolved
1	30	37%-57%
2	60	55%-75%
3	120	NLT 80%

The percentages of the labeled amount of ciprofloxacin ($C_{17}H_{18}FN_3O_3$) dissolved at the times specified conform to <u>Acceptance Table 2</u> in <u>Dissolution (711)</u>.

• UNIFORMITY OF DOSAGE UNITS (905): Meet the requirements

IMPURITIES

• ORGANIC IMPURITIES

Buffer, Mobile phase, and **System suitability solution:** Prepare as directed in the Assay. **Standard stock solution:** 0.5 mg/mL of <u>USP Ciprofloxacin Hydrochloride RS</u> in *Mobile phase*

Standard solution: 1.25 µg/mL of USP Ciprofloxacin Hydrochloride RS in Mobile phase from Standard stock solution

Sample solution: Nominally 0.5 mg/mL of ciprofloxacin in *Mobile phase* prepared as follows. Transfer an equivalent to 250 mg of ciprofloxacin from finely powdered Tablets (NLT 20) to a 500-mL volumetric flask. Add 400 mL of *Mobile phase*, place on a rotary shaker for 15 min, and sonicate for 25 min with intermittent shaking. Allow the solution to cool to room temperature, and dilute with *Mobile phase* to volume. Pass a portion of the solution through a suitable filter of 0.45-µm pore size.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 263 and 278 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Column temperature: 30° Flow rate: 1.5 mL/min Injection volume: 10 µL

System suitability

Samples: System suitability solution and Standard solution

Suitability requirements

Resolution: NLT 6 between the ciprofloxacin and ciprofloxacin ethylenediamine analog peaks at 278 nm, System suitability solution

Tailing factor: NMT 2.0 for the ciprofloxacin peak at 278 nm, Standard solution

Relative standard deviation: NMT 10.0% for the ciprofloxacin peak at 278 nm, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of decarboxyciprofloxacin in the portion of Tablets taken:

Result =
$$(r_1/r_5) \times (C_5/C_1) \times (M_{r1}/M_{r2}) \times (1/F) \times 100$$

 r_{ij} = peak response of decarboxyciprofloxacin at 263 nm from the Sample solution

 r_s = peak response of ciprofloxacin at 263 nm from the Standard solution

 C_S = concentration of USP Ciprofloxacin Hydrochloride RS in the Standard solution (mg/mL)

C, = nominal concentration of ciprofloxacin in the Sample solution (mg/mL)

 M_{c1} = molecular weight of ciprofloxacin, 331.34

 M_{r_2} = molecular weight of anhydrous ciprofloxacin hydrochloride, 367.81

F = relative response factor of decarboxyciprofloxacin (see <u>Table 5</u>)

Calculate the percentage of the other impurities in the portion of Tablets taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times (M_{r1}/M_{r2}) \times (1/F) \times 100$$

https://titumgtamthuoc.com/

r,, = peak response of each impurity at 278 nm from the Sample solution

= peak response of ciprofloxacin at 278 nm from the Standard solution

 C_S = concentration of USP Ciprofloxacin Hydrochloride RS in the Standard solution (mg/mL)

 C_{II} = nominal concentration of ciprofloxacin in the Sample solution (mg/mL)

 M_{c1} = molecular weight of ciprofloxacin, 331.34

 M_{r_2} = molecular weight of anhydrous ciprofloxacin hydrochloride, 367.81

F = relative response factor (see <u>Table 5</u>)

Acceptance criteria: See Table 5.

Table 5

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Decarboxycipro			
floxacin ^a	0.36	1.6	0.2
Desfluorocipro			
floxacin ^b	0.59	1.0	0.2
Ciprofloxacin ethylenediamine			
analog ^{<u>c</u>}	0.68	1.2	0.2
Ciprofloxacin	1.00	-	-
7-Chloro-6-piperazinyl analog ^d	1.20	0.45	0.2
Chlorociprofloxacin ^e	2.10	0.75	0.2
Any unspecified			
impurity		1.0	0.2
Total impurities	-	_	0.6

^a 1-Cyclopropyl-6-fluoro-7-(piperazin-1-yl)quinolin-4(1*H*)-one.

ADDITIONAL REQUIREMENTS

- Packaging and Storage: Preserve in tight containers. Store at controlled room temperature.
- LABELING: When more than one Dissolution test is given, the labeling states the Dissolution test used only if Test 1 is not used.
- USP REFERENCE STANDARDS (11)

USP Ciprofloxacin Ethylenediamine Analog RS

 $7\hbox{-}(2\hbox{-}Aminoethylamino)\hbox{-}1\hbox{-}cyclopropyl\hbox{-}6\hbox{-}fluoro\hbox{-}4\hbox{-}oxo\hbox{-}1,4\hbox{-}dihydroquinoline\hbox{-}3\hbox{-}carboxylic acid.}$

 $C_{15}H_{16}FN_3O_3$ 305.30

USP Ciprofloxacin Hydrochloride RS

b 1-Cyclopropyl-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid.

^c 7-(2-Aminoethylamino)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid.

d 7-Chloro-1-cyclopropyl-4-oxo-6-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid.

^e 6-Chloro-1-cyclopropyl-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid.

https://titutgtamthuoc.com/		USP-NF Ciprofloxacin Extended-Release Tablets		
Topic/Question		Contact	Expert Committee	
	CIPROFLOXACIN EXTENDED-RELEASE TABLETS	Documentary Standards Support	SM12020 Small Molecules 1	

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 37(6)

Current DocID: GUID-EB86F973-6D47-434C-A7DF-3173959A56BD_2_en-US Previous DocID: GUID-EB86F973-6D47-434C-A7DF-3173959A56BD_1_en-US

DOI: https://doi.org/10.31003/USPNF_M4716_02_01

DOI ref: cq35h