

Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-Mar-2019
Document Type: USP Monographs
DocId: GUID-17BA6BA9-D4A7-43DE-A999-2FAE070CFA1F_5_en-US
DOI: https://doi.org/10.31003/USPNF_M12920_05_01
DOI Ref: mj3sd

© 2025 USPC Do not distribute

Carbinoxamine Maleate Tablets

DEFINITION

Carbinoxamine Maleate Tablets contain NLT 93.0% and NMT 107.0% of the labeled amount of carbinoxamine maleate $(C_{16}H_{10}ClN_2O \cdot C_AH_AO_A)$.

IDENTIFICATION

Delete the following:

▲. A.

Standard solution: 0.02 mg/mL of <u>USP Carbinoxamine Maleate RS</u> in dilute sulfuric acid (1 in 70)

Sample solution: Nominally 0.02 mg/mL of carbinoxamine maleate in dilute sulfuric acid (1 in 70), from the Tablets, as directed under <u>Salts of Organic Nitrogenous Bases (501)</u>.

Analytical wavelength: 263 ± 2 nm

Acceptance criteria: The absorptivity of the Sample solution at 263 nm is within 7.0% of that of the Standard solution. ▲2S (USP41)

Add the following:

▲• A. The UV spectrum of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay. ▲2S (USP41)

Add the following:

▲ B. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay. ▲ 2S (USP41)

ASSAY

Change to read:

• PROCEDURE

▲Solution A: 2.72 g/L of monobasic potassium phosphate. Adjust with phosphoric acid to a pH of 4.0.

Solution B: Methanol and acetonitrile (80:20)

Mobile phase: See <u>Table 1</u>.

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	75	25
2	75	25
10	25	75
15	25	75
16	75	25
20	75	25

Diluent 1: 0.1 N hydrochloric acid

Diluent 2: Methanol, acetonitrile, and water (200:50:750)

System suitability solution: 0.1 mg/mL of <u>USP Carbinoxamine Maleate RS</u> and 0.01 mg/mL each of <u>USP Carbinoxamine Related Compound A RS</u> and <u>USP Carbinoxamine Related Compound B RS</u> in *Diluent 2*

Standard solution: 0.1 mg/mL of <u>USP Carbinoxamine Maleate RS</u> in *Diluent 2*

Sample solution: Nominally 0.1 mg/mL of carbinoxamine maleate prepared as follows. Transfer a suitable amount of powder from finely powdered Tablets (NLT 20) to a suitable volumetric flask. Add 70% of the flask volume of *Diluent 1* and shake for 15 min, then dilute with

2/14/25, 3:07 AM USP-NF Carbinoxamine Maleate Tablets

Diluent 2 to volume. Centrifuge the solution and filter the supernatant by passing through a suitable filter of 0.45-µm pore size, discarding the first 2–3 mL of filtrate. Inject the freshly prepared solution immediately.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 225 nm. For *Identification A*, use a diode array detector in the range of 200–400 nm.

Column: 4.6-mm × 15-cm; 5-µm packing L7

Column temperature: 40° Flow rate: 1 mL/minInjection volume: 10 µL

System suitability

Samples: System suitability solution and Standard solution

[Note—See <u>Table 2</u> for relative retention times.]

Suitability requirements

Resolution: NLT 4.0 between carbinoxamine related compound A and carbinoxamine related compound B, System suitability solution

Tailing factor: NMT 1.5, Standard solution

Relative standard deviation: NMT 1.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

 $Calculate \ the \ percentage \ of \ the \ labeled \ amount \ of \ carbinoxamine \ maleate \ (C_{16}H_{19}ClN_2O \cdot C_4H_4O_4) \ in \ the \ portion \ of \ Tablets \ taken:$

Result =
$$(r_{ij}/r_{s}) \times (C_{s}/C_{ij}) \times 100$$

 r_{ij} = peak response of carbinoxamine from the Sample solution

r_s = peak response of carbinoxamine from the Standard solution

C_s = concentration of <u>USP Carbinoxamine Maleate RS</u> in the Standard solution (mg/mL)

 C_{ii} = nominal concentration of carbinoxamine maleate in the Sample solution (mg/mL)

▲2S (USP41)

Acceptance criteria: 93.0%-107.0%

PERFORMANCE TESTS

Change to read:

• Dissolution (711)

Medium: Water; 900 mL Apparatus 2: 50 rpm Time: 45 min

Standard solution: USP Carbinoxamine Maleate RS in Medium with a concentration similar to that expected in the Sample solution

Sample solution: Filter a portion of the solution under test and dilute with Medium as needed.

Instrumental conditions

Mode: UV

Analytical wavelength: Maximum absorbance at about 260 nm

Analysis

Samples: Standard solution and Sample solution

 \triangle Calculate the percentage of the labeled amount of carbinoxamine maleate $(C_{16}H_{19}CIN_2O \cdot C_4H_4O_4)$ dissolved:

Result =
$$(A_{II}/A_S) \times C_S \times V \times D \times (1/L) \times 100$$

 A_{ii} = absorbance from the Sample solution

A_c = absorbance of carbinoxamine maleate from the Standard solution

C_s = concentration of <u>USP Carbinoxamine Maleate RS</u> in the Standard solution (mg/mL)

V = volume of Medium, 900 mL

D = dilution factor for the Sample solution

L = label claim (mg/Tablet)

▲2S (USP41)

Tolerances: NLT 75% (Q) of the labeled amount of carbinoxamine maleate $(C_{16}H_{19}CIN_2O \cdot C_4H_4O_4)$ is dissolved.

• Uniformity of Dosage Units (905): [≜]Meet the requirements _{▲2S} (USP41)

IMPURITIES

Change to read:

◆ORGANIC IMPURITIES

Solution A, Solution B, Mobile phase, Diluent 1, Diluent 2, and System suitability solution: Prepare as directed in the Assay.

Standard stock solution: 0.028 mg/mL of USP Carbinoxamine Maleate RS (equivalent to 0.02 mg/mL of △carbinoxamine) (ERR 1-Mar-2019) and 0.02 mg/mL each of USP Carbinoxamine Related Compound A RS and USP Carbinoxamine Related Compound B RS in Diluent 2

Standard solution: 0.0014 mg/mL of USP Carbinoxamine Maleate RS (equivalent to 0.001 mg/mL of △carbinoxamine) (equivalent to 0.001 mg/mL of △carbinoxamine) (and a carbinoxamine) (equivalent to 0.001 mg/mL of △carbinoxamine) 0.001 mg/mL each of USP Carbinoxamine Related Compound A RS and USP Carbinoxamine Related Compound B RS in Diluent 2, from Standard stock solution

Sample solution: Nominally 1.0 mg/mL of carbinoxamine maleate prepared as follows. Transfer a suitable quantity of powder from finely powdered Tablets (NLT 20) to a suitable volumetric flask. Add 75% of the flask volume of Diluent 1, shake for 15 min, and dilute with Diluent 2 to volume. Centrifuge the solution and filter the supernatant by passing through a suitable filter of 0.45-µm pore size, discarding the first 2-3 mL of filtrate. Inject the freshly prepared solution immediately.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 225 nm

Column: 4.6-mm × 15-cm; 5-µm packing L7

Column temperature: 40° Flow rate: 1 mL/min Injection volume: 10 µL

System suitability

Samples: System suitability solution and Standard solution

[Note—See <u>Table 2</u> for relative retention times.]

Suitability requirements

Resolution: NLT 4.0 between carbinoxamine related compound A and carbinoxamine related compound B, System suitability solution

Relative standard deviation: NMT 5.0% for each corresponding compound present in the Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of carbinoxamine related compound A and carbinoxamine related compound B in the portion of Tablets taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

= peak response of carbinoxamine related compound A or carbinoxamine related compound B from the Sample solution

= peak response of the corresponding Reference Standard from the Standard solution

= concentration of the corresponding Reference Standard in the Standard solution (mg/mL)

= nominal concentration of carbinoxamine maleate in the Sample solution (mg/mL)

Calculate the percentage of each unspecified degradation product in the portion of Tablets taken:

Result =
$$(r_{IJ}/r_{S}) \times (C_{S}/C_{IJ}) \times 100$$

= peak response of each unspecified degradation product from the Sample solution

= peak response of carbinoxamine from the Standard solution

= concentration of <u>USP Carbinoxamine Maleate RS</u> (as the free base) (ERR 1-Mar-2019) in the Standard solution (mg/mL)

= nominal concentration of carbinoxamine maleate in the Sample solution (mg/mL)

Acceptance criteria: See <u>Table 2</u>. The reporting threshold is 0.05%.

Table 2

h2/14/25_3:07 AM ungtamthuoc.com/ USP-NF Carbinoxamine Maleate Tablets

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Carbinoxamine related compound C ^{a.b}	0.68	_
Carbinoxamine	1.0	_
Carbinoxamine related compound B	1.25	0.2
Carbinoxamine related compound A	1.36	0.2
Each unspecified degradation product	_	0.2
Total degradation products	-	2.0

^a Process impurity included for identification only and not included in the calculation of total degradation products.

▲2S (USP41)

ADDITIONAL REQUIREMENTS

Change to read:

• PACKAGING AND STORAGE: Preserve in tight, light-resistant containers, ≜and store at controlled room temperature. ▲2S (USP41)

Change to read:

• USP Reference Standards $\langle 11 \rangle$

USP Carbinoxamine Maleate RS

▲ USP Carbinoxamine Related Compound A RS

 $(4\hbox{-}Chlorophenyl) (pyridin-2\hbox{-}yl) methan one.$

C₁₂H₈CINO

217.65

USP Carbinoxamine Related Compound B RS

(4-Chlorophenyl)(pyridin-2-yl)methanol. $C_{12}H_{10}CINO$ 219.67 $_{\blacktriangle2S}$ (USP41)

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
CARBINOXAMINE MALEATE TABLETS	Documentary Standards Support	SM52020 Small Molecules 5

Chromatographic Database Information: <u>Chromatographic Database</u>

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 42(2)

Current DocID: GUID-17BA6BA9-D4A7-43DE-A999-2FAE070CFA1F_5_en-US

DOI: https://doi.org/10.31003/USPNF_M12920_05_01

DOI ref: mj3sd

 $^{^{\}rm b}$ N,N-Dimethyl-2-[phenyl(pyridin-2-yl)methoxy]ethan-1-amine.