Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-Nov-2024
Document Type: USP Monographs
DocId: GUID-0431D1E0-6A22-403E-8EB5-E1E6C7E387F4_5_en-USD0I: https://doi.org/10.31003/USPNF_M5713_05_01
DOI Ref: 0wwg4

© 2025 USPC Do not distribute

Buprenorphine and Naloxone Sublingual Tablets

To view the Notice from the Expert Committee that posted in conjunction with this accelerated revision, please click https://www.uspnf.com/rb-buprenorphine-naloxone-sub-tabs-20241025.

DEFINITION

Buprenorphine and Naloxone Sublingual Tablets contain amounts of buprenorphine hydrochloride and naloxone hydrochloride equivalent to NLT 90.0% and NMT 110.0% of the labeled amount of buprenorphine ($C_{29}H_{41}NO_4$) and naloxone ($C_{19}H_{21}NO_4$).

IDENTIFICATION

- A. The retention times of the buprenorphine and naloxone peaks of the Sample solution correspond to those of the Standard solution, as obtained in the Assay.
- **B.** The UV absorption spectra of the buprenorphine and naloxone peaks of the *Sample solution* and those of the *Standard solution* exhibit maxima and minima at the same wavelengths, as obtained in the *Assay*.

ASSAY

• PROCEDURE

[Note—It is suggested to protect all solutions containing buprenorphine and naloxone from light.]

Buffer: 9 mM of dibasic ammonium phosphate in water. Adjust with a solution of phosphoric acid and water (1:1) to a pH of 6.2.

Solution A: Acetonitrile, methanol, and *Buffer* (7:3:90) **Solution B:** Acetonitrile, methanol, and *Buffer* (56:24:20)

Mobile phase: See Table 1.

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	99	1
30	1	99
45	1	99
45.1	99	1
55	99	1

Solution C: Phosphoric acid and water (1:1000) **Diluent:** Acetonitrile, methanol, and Solution C (7:3:90)

Standard solution: 0.57 mg/mL of <u>USP Buprenorphine Hydrochloride RS</u> and 0.13 mg/mL of <u>USP Naloxone RS</u> in *Diluent*

Sample solution: Nominally 0.52 mg/mL of buprenorphine and 0.13 mg/mL of naloxone prepared as follows. Transfer NLT 13 Tablets to a suitable volumetric flask, and add about 70% of the final volume of *Diluent*. Sonicate for 15 min with occasional swirling and shake for 15 min. Dilute with *Diluent* to volume. Pass a portion through a suitable filter of 0.45-µm pore size. Discard the first 5 mL of filtrate.

Chromatographic system

(See <u>Chromatography (621), System Suitability</u>.)

Mode: LC

Detector: UV 280 nm. For *Identification B*, use a diode array detector in the range of 210–400 nm.

Column: 4.6-mm × 25-cm; 5-µm packing L11

Column temperature: 60° Flow rate: 0.8 mL/min Injection volume: 100 µL

System suitability

Sample: Standard solution **Suitability requirements**

https://trumgtamthuoc.com/

Tailing factor: NMT 2.0 for both buprenorphine and naloxone

Relative standard deviation: NMT 2.0% for both buprenorphine and naloxone

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of buprenorphine $(C_{29}H_{41}NO_4)$ in the portion of Tablets taken:

Result =
$$(r_{IJ}/r_{S}) \times (C_{S}/C_{IJ}) \times (M_{r1}/M_{r2}) \times 100$$

= peak response of buprenorphine from the Sample solution

= peak response of buprenorphine from the Standard solution

 $C_{\rm s}$ = concentration of <u>USP Buprenorphine Hydrochloride RS</u> in the Standard solution (mg/mL)

= nominal concentration of buprenorphine in the Sample solution (mg/mL)

= molecular weight of buprenorphine, 467.65

= molecular weight of buprenorphine hydrochloride, 504.11

Calculate the percentage of the labeled amount of naloxone ($C_{19}H_{21}NO_4$) in the portion of Tablets taken:

Result =
$$(r_{IJ}/r_{S}) \times (C_{S}/C_{IJ}) \times 100$$

= peak response of naloxone from the Sample solution

= peak response of naloxone from the Standard solution

= concentration of <u>USP Naloxone RS</u> in the Standard solution (mg/mL)

= nominal concentration of naloxone in the Sample solution (mg/mL)

Acceptance criteria: 90.0%-110.0% of the labeled amount of buprenorphine $(C_{29}H_{41}NO_4)$ and naloxone $(C_{10}H_{21}NO_4)$

PERFORMANCE TESTS

Change to read:

• Dissolution (711)

^Test 1_ (RB 1-Nov-2024)

Medium: Water (deaerated for 5 min); 500 mL

Apparatus 1: 100 rpm

Time: 10 min

Buffer: 0.018 M monobasic potassium phosphate in water prepared as follows. Dissolve 2.4 g of monobasic potassium phosphate and 0.5

g of sodium hydroxide in each liter of water. Adjust with phosphoric acid to a pH of 6.8.

Solution A: Acetonitrile, methanol, and Buffer (40:20:40)

Solution B: Acetonitrile and Buffer (78:22)

Mobile phase: See Table 2.

Table 2

Time (min)	Solution A (%)	Solution B (%)
0	100	0
2.0	100	0
3.0	0	100
6.0	0	100
6.1	100	0
8.0	100	0

Diluent: Methanol and water (50:50)

https://trumgtamthuoc.com/ Standard solution: 0.01 mg/mL of <u>USP Buprenorphine Hydrochloride RS</u> and 0.0025 mg/mL of <u>USP Naloxone RS</u> in *Diluent*. Sonicate if necessary. Pass a portion through a suitable filter of 0.45-µm pore size. Discard the first 4 mL of filtrate.

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm × 5-cm; 5-µm packing L7

Column temperature: 25° Flow rate: 1.0 mL/min Injection volume: 40 µL

System suitability

Sample: Standard solution **Suitability requirements**

Tailing factor: NMT 2.0 for both buprenorphine and naloxone

Relative standard deviation: NMT 2.0% for both buprenorphine and naloxone

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of buprenorphine $(C_{20}H_{41}NO_4)$ dissolved:

Result =
$$(r_U/r_S) \times C_S \times V \times (M_{r1}/M_{r2}) \times (1/L) \times 100$$

= peak response of buprenorphine from the Sample solution r_{U}

= peak response of buprenorphine from the Standard solution r_s

 C_{s} = concentration of <u>USP Buprenorphine Hydrochloride RS</u> in the Standard solution (mg/mL)

V = volume of Medium, 500 mL

= molecular weight of buprenorphine, 467.65 M_{r_1}

 M_{r2} = molecular weight of buprenorphine hydrochloride, 504.11

L = label claim of buprenorphine (mg/Tablet)

Calculate the percentage of the labeled amount of naloxone (C₁₀H₂₁NO₄) dissolved:

Result =
$$(r_{I}/r_{S}) \times C_{S} \times V \times (1/L) \times 100$$

= peak response of naloxone from the Sample solution

= peak response of naloxone from the Standard solution

= concentration of <u>USP Naloxone RS</u> in the Standard solution (mg/mL)

= volume of Medium, 500 mL

= label claim of naloxone (mg/Tablet)

Tolerances: NLT 80% (Q) of the labeled amount of buprenorphine $(C_{29}H_{41}NO_4)$ and naloxone $(C_{19}H_{21}NO_4)$ is dissolved.

▲Test 2: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 2.

Medium: Water; 500 mL Apparatus 1: 100 rpm

Time: 8 min

Solution A: 5 mL of phosphoric acid diluted with water to 10 mL

Solution B: Dissolve 1.0 g of sodium chloride and 0.2 g of octanesulfonic acid sodium salt in 1 L of water. Adjust with Solution A to a pH of

Solution C: Methanol Mobile phase: See Table 3.

Table 3

https://trumthuoc.com/

USP-NF Buprenorphine and Naloxone Sublingual Tablets

Time (min)	Solution B (%)	Solution C (%)
0	65	35
4	55	45
10	35	65
12	35	65
12.1	65	35
18	65	35

Diluent: Methanol, water, and phosphoric acid (50: 50: 0.1)

Standard stock solution: 0.44 mg/mL of <u>USP Buprenorphine Hydrochloride RS</u> and 0.1 mg/mL of <u>USP Naloxone RS</u> in *Diluent*. Sonicate to dissolve, if necessary.

Standard solution: $(L_1/500)$ mg/mL of buprenorphine from <u>USP Buprenorphine Hydrochloride RS</u> and $(L_2/500)$ mg/mL of <u>USP Naloxone RS</u> from *Standard stock solution* in *Medium*, where L_1 and L_2 are the label claims of buprenorphine and naloxone in mg/Tablet, respectively

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size, discarding an appropriate volume of filtrate so that a consistent result can be obtained.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Column temperature: 50° Flow rate: 1.5 mL/min Injection volume: 100 µL

System suitability

Sample: Standard solution **Suitability requirements**

Tailing factor: NMT 2.0 for buprenorphine and naloxone

Relative standard deviation: NMT 2.0% for buprenorphine and naloxone

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of buprenorphine ($C_{29}H_{41}NO_4$) dissolved:

Result =
$$(r_{11}/r_{s}) \times C_{s} \times V \times (M_{r1}/M_{r2}) \times (1/L_{1}) \times 100$$

 r_U = peak response of buprenorphine from the Sample solution

r_s = peak response of buprenorphine from the Standard solution

C_s = concentration of <u>USP Buprenorphine Hydrochloride RS</u> in the *Standard solution* (mg/mL)

V = volume of Medium, 500 mL

 M_{r1} = molecular weight of buprenorphine, 467.65

 M_{r2} = molecular weight of buprenorphine hydrochloride, 504.11

 L_1 = label claim of buprenorphine (mg/Tablet)

Calculate the percentage of the labeled amount of naloxone (C₁₀H₂₁NO₄) dissolved:

Result =
$$(r_{U}/r_{c}) \times C_{c} \times V \times (1/L_{c}) \times 100$$

 r_{ij} = peak response of naloxone from the Sample solution

 r_s = peak response of naloxone from the Standard solution

C_s = concentration of <u>USP Naloxone RS</u> in the Standard solution (mg/mL)

https://trumgtamthuoc.com/

V = volume of Medium, 500 mL

L₂ = label claim of naloxone (mg/Tablet)

Tolerances: NLT 80% (Q) of the labeled amount of buprenorphine ($C_{29}H_{41}NO_4$) and NLT 75% (Q) of the labeled amount of naloxone ($C_{19}H_{21}NO_4$) is dissolved.

Test 3: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 3.

Medium: 0.01 N hydrochloric acid; 500 mL, deaerated, if necessary

Apparatus 1: 100 rpm

Time: 3 min

Solution A: Acetonitrile, water, and trifluoroacetic acid (10: 90: 0.1) **Solution B:** Acetonitrile, water, and trifluoroacetic acid (90: 10: 0.1)

Mobile phase: See Table 4.

Table 4

Time (min)	Solution A (%)	Solution B (%)
0	100	0
10	80	20
15	20	80
16	100	0
20	100	0

Standard stock solution A: 0.44 mg/mL of <u>USP Buprenorphine Hydrochloride RS</u> prepared as follows. Transfer a quantity of <u>USP Buprenorphine Hydrochloride RS</u> to an appropriate volumetric flask and dissolve in 10% of the flask volume of <u>methanol</u>. Sonicate for about 5 min with intermittent shaking to dissolve. Add 60% of the flask volume of *Medium*. Sonicate to dissolve, if necessary. Dilute with *Medium* to volume.

Standard stock solution B: 0.22 mg/mL of <u>USP Naloxone RS</u> in *Medium*. Sonicate to dissolve with intermittent shaking, if necessary. **Standard solution:** $(L_1/500)$ mg/mL of buprenorphine from <u>USP Buprenorphine Hydrochloride RS</u> and $(L_2/500)$ mg/mL of <u>USP Naloxone RS</u> from *Standard stock solution A* and *Standard stock solution B* in *Medium*, where L_1 and L_2 are the label claims of buprenorphine and naloxone in mg/Tablet, respectively

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size, discarding an appropriate volume of filtrate so that a consistent result can be obtained.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 240 nm

Column: 4.6-mm × 25-cm; 5-µm packing L11

Column temperature: 45° Flow rate: 1.5 mL/minInjection volume: 100 µL

System suitability

Sample: Standard solution **Suitability requirements**

Tailing factor: NMT 2.0 for buprenorphine and naloxone

Relative standard deviation: NMT 2.0% for buprenorphine and naloxone

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of buprenorphine $(C_{29}H_{41}NO_4)$ dissolved:

Result =
$$(r_{I}/r_{S}) \times C_{S} \times V \times (M_{r1}/M_{r2}) \times (1/L_{1}) \times 100$$

 r_{ij} = peak response of buprenorphine from the Sample solution

 r_s = peak response of buprenorphine from the Standard solution

C_s = concentration of <u>USP Buprenorphine Hydrochloride RS</u> in the Standard solution (mg/mL)

V = volume of Medium, 500 mL

 M_{11} = molecular weight of buprenorphine, 467.65

 M_{r2} = molecular weight of buprenorphine hydrochloride, 504.11

 L_1 = label claim of buprenorphine (mg/Tablet)

Calculate the percentage of the labeled amount of naloxone ($C_{19}H_{21}NO_4$) dissolved:

Result =
$$(r_{11}/r_{s}) \times C_{s} \times V \times (1/L_{s}) \times 100$$

 r_{ij} = peak response of naloxone from the Sample solution

 $r_{\rm s}$ = peak response of naloxone from the Standard solution

C_s = concentration of <u>USP Naloxone RS</u> in the Standard solution (mg/mL)

V = volume of Medium, 500 mL

 L_2 = label claim of naloxone (mg/Tablet)

Tolerances: NLT 80% (Q) of the labeled amount of buprenorphine (C₂₀H₄₁NO₄) and naloxone (C₁₀H₂₁NO₄) is dissolved. (RB 1-Nov-2024)

• UNIFORMITY OF DOSAGE UNITS (905): Meet the requirements

IMPURITIES

Change to read:

ORGANIC IMPURITIES

[Note—It is suggested to protect all solutions containing buprenorphine and naloxone from light.]

Buffer, Solution A, Solution B, Mobile phase, Solution C, Diluent, Sample solution, and Chromatographic system: Proceed as directed in the *Assay*.

Standard solution: 0.0015 mg/mL of USP Buprenorphine Hydrochloride RS and 0.0004 mg/mL of USP Naloxone RS in Diluent

System suitability

Sample: Standard solution **Suitability requirements**

Relative standard deviation: NMT 5% for buprenorphine and naloxone

Analysis

Samples: Sample solution and Standard solution

Identify the buprenorphine degradation products using the relative retention times given in ≜ Table 5. ▲ (RB 1-Nov-2024)

Calculate the percentage of each buprenorphine related degradation product in the portion of Tablets taken:

Result =
$$(r_{11}/r_{s}) \times (C_{s}/C_{11}) \times (M_{r1}/M_{r2}) \times 100$$

 r_{ij} = peak response of each individual buprenorphine related degradation product from the Sample solution

 $r_{\rm s}$ = peak response of buprenorphine from the Standard solution

C_s = concentration of <u>USP Buprenorphine Hydrochloride RS</u> in the *Standard solution* (mg/mL)

C₁₁ = nominal concentration of buprenorphine in the Sample solution (mg/mL)

 M_{r_1} = molecular weight of buprenorphine, 467.65

 M_{r_2} = molecular weight of buprenorphine hydrochloride, 504.11

Identify the naloxone degradation products using the relative retention times given in ▲ Table 5. ▲ (RB 1-Nov-2024)

Calculate the percentage of each naloxone related degradation product and any other degradation product in the portion of Tablets taken:

Result =
$$(r_{ij}/r_{s}) \times (C_{s}/C_{ij}) \times 100$$

 r_{μ} = peak response of each naloxone related degradation product or any other degradation product from the Sample solution

 $r_{\rm o}$ = peak response of naloxone from the Standard solution

C_s = concentration of <u>USP Naloxone RS</u> in the Standard solution (mg/mL)

C₁₁ = nominal concentration of naloxone in the Sample solution (mg/mL)

Acceptance criteria: See [▲] *Table 5*. ▲ (RB 1-Nov-2024) Disregard any peaks below 0.05%.

▲Table 5 (RB 1-Nov-2024)

	Relative	Acceptance
	Retention	Criteria,
Name	Time	NMT (%)
Naloxone degradation product 1 ^a	0.30	0.5
Naloxone degradation product 2 ^a	0.54	0.5
Dealkyl buprenorphine ^{b.c}	0.55	_
Naloxone	0.61	-
Naloxone degradation product 3 ^a	0.67	0.5
Buprenorphine nitrile ^{c.d}	0.90	_
6-O-Desmethylbuprenorphine ^{C,E}	0.91	_
Buprenorphine degradation		
product 1 ^f	0.95	0.3
Buprenorphine 7-(S)-epimer ^{©.g}	0.99	-
Buprenorphine	1.00	-
Buprenorphine butenyl analog ^{c.h}	1.03	-
3-O-Methylbuprenorphine ^{C,j}	1.16	_
Any unspecified degradation product ^a	-	0.3
Total degradation products	-	3.0

^a Quantified relative to naloxone.

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in tight containers, and store at controlled room temperature.

Add the following:

▲ Labeling: The labeling states the *Dissolution* test used only if *Test 1* is not used. (RB 1-Nov-2024)

USP REFERENCE STANDARDS (11)
 USP Buprenorphine Hydrochloride RS
 USP Naloxone RS

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

^b (S)-2-(4,5 α -Epoxy-3-hydroxy-6-methoxy-6 α ,14-ethanomorphinan-7 α -yl)-3,3-dimethylbutan-2-ol.

^c These are process impurities and are excluded from the total degradation products.

d $4,5\alpha$ -Epoxy- 7α -[(S)-2-hydroxy-3,3-dimethylbutan-2-yl]-3,6-dimethoxy- 6α ,14-ethanomorphinan-17-carbonitrile.

 $^{^{}e} \quad \text{(S)-2-[17-(Cyclopropylmethyl)-4,5} \\ \alpha \text{-epoxy-3,6-dihydroxy-6} \\ \alpha \text{,14-ethanomorphinan-7} \\ \alpha \text{-yl]-3,3-dimethylbutan-2-ol.}$

f Quantified relative to buprenorphine.

 $^{^{}g} \hspace{0.2cm} \text{(S)-2-[17-(Cyclopropylmethyl)-4,5} \\ \alpha\text{-epoxy-3-hydroxy-6-methoxy-6} \\ \alpha\text{,} 14\text{-ethanomorphinan-7} \\ \beta\text{-yl]-3,3-dimethylbutan-2-ol.}$

^h (S)-2-[17-(But-3-en-1-yl)-4,5 α -epoxy-3-hydroxy-6-methoxy-6 α ,14-ethanomorphinan-7 α -yl]-3,3-dimethylbutan-2-ol.

 $^{^{\}text{i}}$ (S)-2-[17-(Cyclopropylmethyl)-4,5 α -epoxy-3,6-dimethoxy-6 α ,14-ethanomorphinan-7 α -yl]-3,3-dimethylbutan-2-ol.

https://trumgtamthuoc.com/

USP-NF Buprenorphine and Naloxone Sublingual Tablets

Topic/Question	Contact	Expert Committee
BUPRENORPHINE AND NALOXONE SUBLINGUAL TABLETS	<u>Documentary Standards Support</u>	SM22020 Small Molecules 2

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 42(3)

Current DocID: GUID-0431D1E0-6A22-403E-8EB5-E1E6C7E387F4_5_en-US

DOI: <u>https://doi.org/10.31003/USPNF_M5713_05_01</u>

DOI ref: <u>0wwg4</u>