Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-Dec-2020
Document Type: USP Monographs
DocId: GUID-3D774F8D-C554-44B5-BE09-A7FB6B0B43A3_2_en-US
DOI: https://doi.org/10.31003/USPNF_M10462_02_01
DOI Ref: ha7nm

© 2025 USPC Do not distribute

Add the following:

***Budesonide Nasal Spray**

DEFINITION

Budesonide Nasal Spray is an aqueous buffered suspension of Budesonide, supplied in a form suitable for nasal administration and contains suitable preservatives. It contains NLT 90.0% and NMT 110.0% of the labeled amount of budesonide ($C_{25}H_{34}O_6$).

IDENTIFICATION

- A. The retention time of the budesonide peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.
- **B.** The UV spectrum of the budesonide peak of the *Sample solution* exhibits a maximum and minimum at the same wavelengths as those of the *Standard solution*, as obtained in the *Assay*.

ASSAY

• PROCEDURE

Mobile phase: Acetonitrile and water (70:30)

[Note-Use low-actinic glassware for preparation of the Standard solution and Sample solution.]

Standard solution: 0.05 mg/mL of USP Budesonide RS in acetonitrile

Sample solution: Nominally 0.05 mg/mL of budesonide in <u>acetonitrile</u> prepared as follows. Prepare a composite by mixing NLT 5 containers of Nasal Spray in a suitable container. Weigh a quantity of the composite solution into a suitable volumetric flask. Dilute with <u>acetonitrile</u> to volume.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 245 nm. For *Identification B*, use a diode array detector in the range of 200–400 nm.

Column: 4.6-mm × 25-cm; 5-µm packing L1

Flow rate: 1 mL/min Injection volume: 50 µL

Run time: NLT 2 times the retention time of budesonide

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 1.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of budesonide $(C_{25}H_{34}O_6)$ in the portion of Nasal Spray taken:

Result =
$$(r_{I}/r_{S}) \times (C_{S}/C_{I}) \times 100$$

 r_{ij} = peak response of budesonide from the Sample solution

 r_s = peak response of budesonide from the Standard solution

 C_S = concentration of <u>USP Budesonide RS</u> in the Standard solution (mg/mL)

 C_{ij} = nominal concentration of budesonide in the Sample solution (mg/mL)

Acceptance criteria: 90.0%-110.0%

OTHER COMPONENTS

• CONTENT OF POTASSIUM SORBATE

Perform this test if potassium sorbate is a component in the Nasal Spray.

Buffer: 1.4 g/L of monobasic potassium phosphate in water. Adjust with phosphoric acid to pH 3.0.

Mobile phase: Acetonitrile and Buffer (40:60)

https://trumgtamthuoc.com/

Standard solution: 0.04 mg/mL of <u>USP Potassium Sorbate RS</u> in <u>water</u>

Sample solution: Nominally 0.04 mg/mL of potassium sorbate in <u>water</u> prepared as follows. Prepare a composite by mixing NLT 5 containers of Nasal Spray in a suitable container. Transfer 1.0 mL of the well-mixed composite solution to a 25-mL volumetric flask containing 10 mL of <u>water</u>. Add 5 drops of 0.5 N <u>hydrochloric acid</u>. Dilute with <u>water</u> to volume. Centrifuge for about 10 min at about 3600 rpm, and use the clear solution.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 260 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Flow rate: 1 mL/min Injection volume: 10 µL

Run time: NLT 4 times the retention time of potassium sorbate

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of potassium sorbate (C, H, KO,) in the portion of Nasal Spray taken:

Result =
$$(r_u/r_s) \times (C_s/C_u) \times 100$$

 r_{ij} = peak response of potassium sorbate from the Sample solution

 $r_{\rm s}$ = peak response of potassium sorbate from the Standard solution

C_s = concentration of <u>USP Potassium Sorbate RS</u> in the *Standard solution* (mg/mL)

C, = nominal concentration of potassium sorbate in the Sample solution (mg/mL)

Acceptance criteria: 50.0%-110.0%

• CONTENT OF EDETATE DISODIUM

Perform this test if edetate disodium is a component in the Nasal Spray.

Buffer: 17 g/L of tetrabutylammonium hydrogen sulfate in water. Adjust with 2 M ammonium acetate to a pH of 4.4.

Solution A: Methanol, Buffer, and water (12:20:68) **Solution B:** Methanol, Buffer, and water (70:7:23)

Mobile phase: See Table 1.

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	100	0
10	100	0
11	0	100
20	0	100

Diluent: Dissolve 250 mg of <u>cupric sulfate</u> in 400 mL of <u>water</u>. Add 100 mL of <u>Buffer</u>. Mix well and filter.

Standard stock solution: 0.25 mg/mL of USP Edetate Disodium RS in water

 $\textbf{Standard solution:} \ 0.05 \ \text{mg/mL of} \ \underline{\text{USP Edetate Disodium RS}} \ \text{in \textit{Diluent from Standard stock solution}}$

Sample solution: Nominally 0.05 mg/mL of edetate disodium in *Diluent* prepared as follows. Prepare a composite by mixing NLT 5 containers of Nasal Spray in a suitable container. Transfer 5.0 mL of the composite solution to a 10-mL volumetric flask. Add 0.5 mL of 0.5 N hydrochloric acid. Dilute with *Diluent* to volume. Centrifuge for about 10 min at about 3600 rpm, and use the supernatant.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

https://tifumgtamthuoc.com/ column: 4.6-mm × 15-cm; 5-µm packing L7

Flow rate: 1 mL/min Injection volume: 25 µL **System suitability**

Sample: Standard solution

Suitability requirements Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of edetate disodium ($C_{10}H_{14}N_2O_8 \cdot 2H_2O \cdot 2Na$) in the portion of Nasal Spray taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

= peak response of edetate disodium from the Sample solution

= peak response of edetate disodium from the Standard solution

C_s = concentration of <u>USP Edetate Disodium RS</u> in the Standard solution (mg/mL)

 C_{ij} = nominal concentration of edetate disodium in the Sample solution (mg/mL)

Acceptance criteria: 75.0%-110.0%

PERFORMANCE TESTS

• Delivered-Dose Uniformity (within container)

Mobile phase, Chromatographic system, and System suitability: Proceed as directed in the Assay.

Standard solution: 3 µg/mL of USP Budesonide RS in acetonitrile

Sample solution: Nominally 3 µg/mL of budesonide in acetonitrile prepared as follows. Prime the metered spray by discharging a predetermined number of actuations to waste. Discharge the next selected actuation into a separate 10-mL volumetric flask for beginning and end-of-unit sample. [Note-Hold the 10-mL volumetric flask in an inverted position, and immediately turn upright after capturing the contents of the selected actuation.] Dilute with acetonitrile to volume.

Repeat this procedure with 9 additional units.

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of budesonide ($C_{25}H_{34}O_6$) in each dose of Nasal Spray taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times 100$$

= peak response of budesonide from the Sample solution

= peak response of budesonide from the Standard solution

 $C_{\rm S}$ = concentration of <u>USP Budesonide RS</u> in the Standard solution (µg/mL)

 C_{μ} = nominal concentration of budesonide in the Sample solution (µg/mL)

Acceptance criteria

Tier 1

- 1. The mean results of 10 dosage units at each beginning-of-unit sample and at end-of-unit sample are within 85.0%-115.0% of the labeled amount of budesonide (C25H34O6).
- 2. NMT 2 individual results outside of 80%-120% of the labeled amount of budesonide (C₂₅H₃₄O₆).
- 3. None of the individual results outside of 75%-125% of the labeled amount of budesonide (C₂₅H₃₄O₆).

If the criteria in Tier 1 cannot be met, proceed to Tier 2.

Tier 2: Test an additional 20 units at each actuation. All the 60 results (including the results from Tier 1) meet the following Acceptance

- 1. The mean results of 30 units at each beginning-of-unit sample and at end-of-unit sample are within 85.0%-115.0% of the labeled amount of budesonide $(C_{25}H_{34}O_6)$.
- 2. NMT 6 of the 60 individual results outside of 80%-120% of the labeled amount of budesonide ($C_{25}H_{34}O_6$).
- 3. None of the 60 individual results outside of 75%-125% of the labeled amount of budesonide $(C_{25}H_{34}O_6)$.
- MINIMUM FILL (755): Meets the requirements

https://truffgtamthuoc.com/

• ORGANIC IMPURITIES

Buffer: 2.7 g/L of monobasic potassium phosphate in water. Adjust with phosphoric acid to a pH of 3.0.

Solution A: Acetonitrile and Buffer (27:73)

Solution B: <u>Acetonitrile</u> **Mobile phase:** See <u>Table 2</u>.

Table 2

Time (min)	Solution A (%)	Solution B (%)
0	100	0
30	100	0
50	92	8
60	85	15
75	85	15
75.1	100	0
80	100	0

Diluent: Acetonitrile and water (20:80)

Calcium chloride solution: 29 g/L of calcium chloride in water

[Note-Use low-actinic glassware for preparation of the Standard solution and Sample solution.]

Standard stock solution: 40 µg/mL of USP Budesonide RS in acetonitrile

Standard solution: 0.4 µg/mL of <u>USP Budesonide RS</u> in *Diluent* from *Standard stock solution* **Sensitivity solution:** 0.1 µg/mL of <u>USP Budesonide RS</u> in *Diluent* from *Standard solution*

Sample solution: Nominally 100 μg/mL of budesonide prepared as follows. Prepare a composite by mixing NLT 5 containers of Nasal Spray in a suitable container. Transfer 4.0 mL of the well-stirred composite solution to a 10-mL volumetric flask. Add 0.5 mL of *Calcium chloride solution*. Mix and dilute with acetonitrile to volume. Transfer the solution into a centrifuge tube and centrifuge for about 10 min at about 3600 rpm. Pass the supernatant through a suitable syringe filter of 0.45-μm pore size into a test tube. Transfer 4.0 mL of the filtrate into a 10-mL volumetric flask and dilute with water to volume.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 240 nm

System suitability

Column: 4.6-mm × 15-cm; 5-µm packing L1

Column temperature: 35° Flow rate: 1.3 mL/min Injection volume: 100 µL

Samples: Standard solution and Sensitivity solution

[Note—See <u>Table 3</u> for the relative retention times. Budesonide, the active ingredient, elutes as two peaks for epimer A and epimer B under the chromatographic conditions.]

Suitability requirements

Resolution: NLT 1.5 between epimer B and epimer A, Standard solution

Tailing factor: NMT 2.0 for epimer B and epimer A of budesonide, Standard solution

Relative standard deviation: NMT 5.0% for the sum of epimer B and epimer A, Standard solution

Signal-to-noise ratio: NLT 10 for epimer B and epimer A, Sensitivity solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of budesonide glyoxal (epimers), budesonide acid, and any unspecified impurity in the portion of Nasal Spray taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times 100$$

 r_{ij} = peak response of budesonide glyoxal (epimers), budesonide acid, or any unspecified impurity from the Sample solution

- $r_{_{
 m S}}$ = sum of peak responses of budesonide epimer A and budesonide epimer B from the Standard solution
- $C_{_{\rm S}}~={
 m concentration}~{
 m of}~{
 m \underline{USP~Budesonide~RS}}~{
 m in}~{
 m the}~{
 m Standard~solution}~{
 m (\mu g/mL)}$
- $C_{_{U}}\,\,$ = nominal concentration of budesonide in the Sample solution (µg/mL)

Acceptance criteria: See Table 3.

Table 3

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
16α-Hydroxyprednisolone ^{a,b}	0.09	_
Budesonide acetaldehyde acetal (epimers) ^{c,b}	0.27, 0.28	_
Budesonide p-homo analog ^{d,b}	0.32	-
Desonide ^{e,b}	0.36	-
Budesonide glyoxal (epimers) ^f	0.64, 0.69	0.6 ^g
Budesonide related compound E ^h , budesonide pyruvic acid analog ^{i,j}	0.83	1.0
Budesonide related compound Lkb	0.90	_
Budesonide epimer B	1.00	_
Budesonide epimer A	1.10	-
Budesonide related compound G (epimers) ^{L.b}	1.21, 1.29	_
Budesonide 21-acetate (epimers) ^{m,b}	2.12, 2.18	-
Any unspecified impurity	-	0.6
Total impurities	_	2.0

^a 11β , 16α , 17, 21-Tetrahydroxypregna-1, 4-diene-3, 20-dione.

SPECIFIC TESTS

• <u>PH (791)</u>: 4.0-4.8

^b Process impurities, do not include in calculation of total impurities.

^c 16α ,17-[Ethylidenebis(oxy)]-11 β ,21-dihydroxypregna-1,4-diene-3,20-dione.

 $^{^{}d}~~16\alpha,17-[Butylidenebis(oxy)]-11\beta-hydroxy-17-(hydroxymethyl)-\text{D-homoandrosta-1,4-diene-3,17a-dione; also known as D-homobudesonide.}$

 $^{^{\}rm e}$ 16 α ,17-[1-Methylethylidenebis(oxy)]-11 β , 21-dihydroxypregna-1,4-diene-3,20-dione.

 $^{^{}f}$ 16 α ,17-[Butylidenebis(oxy)]-11 β -hydroxy-3,20-dioxopregna-1,4-dien-21-al; also known as 21-dehydrobudesonide.

^g Includes both epimers.

^h Also known as 14,15-dehydrobudesonide or budesonide 14-ene.

ⁱ 16α ,17-[Butylidenebis(oxy)]-11 β -hydroxy-3,20-dioxopregna-1,4-dien-21-oic acid.

^j When budesonide related compound E and budesonide pyruvic acid analog coelute, the result is reported as degradation product budesonide pyruvic acid analog.

^k Also known as 11-ketobudesonide.

Also known as 1,2-dihydrobudesonide.

 $^{^{}m}$ 16 α ,17-[Butylidenebis(oxy)]-11 β -hydroxypregna-1,4-diene-3,20-dione-21-yl acetate.

• <u>MICROBIAL ENUMERATION TESTS (61)</u> and <u>Tests for Specified MICROORGANISMS (62)</u>: The total aerobic microbial viable count does not exceed 10² cfu/mL, and the total combined yeasts and molds count does not exceed 10¹ cfu/mL. It meets the requirements of the tests for the absence of *Escherichia coli, Salmonella species, Pseudomonas aeruginosa*, and *Staphylococcus aureus*.

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Store at controlled room temperature in an upright position, protected from light.
- USP Reference Standards $\langle 11 \rangle$

USP Budesonide RS
USP Edetate Disodium RS

USP Potassium Sorbate RS▲ (USP 1-Dec-2020)

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
BUDESONIDE NASAL SPRAY	Documentary Standards Support	SM52020 Small Molecules 5

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 44(3)

Current DocID: GUID-3D774F8D-C554-44B5-BE09-A7FB6B0B43A3_2_en-US

DOI: https://doi.org/10.31003/USPNF_M10462_02_01

DOI ref: ha7nm