Status: Currently Official on 13-Feb-2025
Official Date: Official as of 01-Aug-2019
Document Type: USP Monographs
DocId: GUID-BF463C51-FDCD-4186-A80D-A871742712BB_2_en-US
DOI: https://doi.org/10.31003/USPNF_M4709_02_01
DOI Ref: 7t9fa

© 2025 USPC Do not distribute

Add the following:

***Azelastine Hydrochloride Ophthalmic Solution**

DEFINITION

Azelastine Hydrochloride Ophthalmic Solution contains NLT 90.0% and NMT 110.0% of the labeled amount of azelastine hydrochloride $(C_{22}H_{24}CIN_3O \cdot HCI)$.

IDENTIFICATION

- A. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.
- B. The UV spectrum of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer 1: 2.88 g/L of octanesulfonic acid sodium salt and 0.91 g/L of monobasic potassium phosphate in water. Adjust with phosphoric acid to a pH of 3.0.

Buffer 2: 0.87 g/L of dibasic potassium phosphate in water. Adjust with phosphoric acid to a pH of 6.5.

Solution A: Acetonitrile and Buffer 1 (25:75)

Solution B: Acetonitrile

Mobile phase: See <u>Table 1</u>. Return to the original conditions, and re-equilibrate the system for NLT 5 min.

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	100	0
20	85	15
35	65	35
45	45	55
60	45	55

Diluent: Acetonitrile and Buffer 2 (25:75)

System suitability solution: 2.5 µg/mL each of <u>USP Azelastine Hydrochloride RS</u> and <u>USP Azelastine Related Compound F RS</u> in *Diluent*

Standard solution: 0.08 mg/mL of <u>USP Azelastine Hydrochloride RS</u> in *Diluent*

Sample stock solution: Combine the contents of NLT 5 containers of Ophthalmic Solution.

Sample solution: Nominally 0.08 mg/mL of azelastine hydrochloride from the Sample stock solution in Diluent

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 25-cm; 5-µm packing L10

Column temperature: 30° Flow rate: 2 mL/min Injection volume: 10 µL

System suitability

Samples: System suitability solution and Standard solution [Note—See <u>Table 2</u> for the relative retention times.]

Suitability requirements

Resolution: NLT 1.5 between azelastine and azelastine related compound F, System suitability solution

Tailing factor: NMT 1.5, Standard solution

Relative standard deviation: NMT 2.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of azelastine hydrochloride ($C_{22}H_{24}CIN_3O\cdot HCI$) in the portion of Ophthalmic Solution taken:

Result =
$$(r_{ij}/r_{s}) \times (C_{s}/C_{ij}) \times 100$$

r,, = peak response from the Sample solution

r_s = peak response from the Standard solution

C_s = concentration of <u>USP Azelastine Hydrochloride RS</u> in the Standard solution (mg/mL)

 C_{II} = nominal concentration of azelastine hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: 90.0%-110.0%

IMPURITIES

• ORGANIC IMPURITIES

Mobile phase, Diluent, System suitability solution, Standard solution, Sample stock solution, and Chromatographic system: Proceed as directed in the *Assay*.

Sensitivity solution: 0.0005 mg/mL of USP Azelastine Hydrochloride RS in Diluent

Sample solution: Nominally 0.5 mg/mL of azelastine hydrochloride (use the Sample stock solution)

System suitability

Samples: System suitability solution, Standard solution, and Sensitivity solution

Suitability requirements

Resolution: NLT 1.5 between azelastine and azelastine related compound F, System suitability solution. [Note—If azelastine related compound F splits into two peaks, use the first peak for the determination of Resolution.]

Relative standard deviation: NMT 2.0%, Standard solution

Signal-to-noise ratio: NLT 10, Sensitivity solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each degradation product in the portion of Ophthalmic Solution taken:

Result =
$$(r_1/r_s) \times (C_s/C_{11}) \times (1/F) \times 100$$

 r_{ij} = peak response of each degradation product from the Sample solution

 $r_{\rm s}$ = peak response from the Standard solution

C_s = concentration of <u>USP Azelastine Hydrochloride RS</u> in the *Standard solution* (mg/mL)

C, = nominal concentration of azelastine hydrochloride in the Sample solution (mg/mL)

F = relative response factor (see <u>Table 2</u>)

Acceptance criteria: See Table 2.

Table 2

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Benzohydrazide ^a	0.12	_	_
Azelastine related compound	0.17	-	_
Chlorophenylacetylbenzoic acid ^{a.c}	0.65	-	_
Azelastine related compound	0.7	1.20	0.5

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Azelastine	1.0	_	_
Azelastine related compound	1.08	0.71	1.5
Azelastine related compound	1.68	_	_
Any individual degradation product	_	1.0	0.5
Total degradation products	_	_	1.5

^a Process impurity included in the table for identification only. Process impurities are controlled in the drug substance and are not to be reported or included in the total degradation products.

- ^d 4-(4-Chlorobenzyl)phthalazin-1(2*H*)-one.
- ^e If the peak splits into two, identify both the peaks and quantify together.
- $^{\mathsf{f}}$ 3-(4-Chlorobenzylidene)isobenzofuran-1(3H)-one.

SPECIFIC TESTS

- PH (791): 5.0-6.5
- OSMOLALITY AND OSMOLARITY (785): 265-375 mOsmol/kg
- STERILITY TESTS (71): Meets the requirements
- OTHER REQUIREMENTS: It meets the requirements in Ophthalmic Products—Quality Tests (771).

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in tight containers at controlled room temperature.
- USP Reference Standards $\langle 11 \rangle$

USP Azelastine Hydrochloride RS

USP Azelastine Related Compound F RS

 $\hbox{$4$-[4-(4-Chlorobenzyl)-1-oxophthalazin-2(1$${\it H}$)-yl]-1-methylaze pane 1-oxide.}$

 $C_{22}H_{24}CIN_3O_2$ 397.90 (USP 1-Aug-2019)

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
AZELASTINE HYDROCHLORIDE OPHTHALMIC SOLUTION	<u>Documentary Standards Support</u>	SM52020 Small Molecules 5

Chromatographic Database Information: <u>Chromatographic Database</u>

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 43(3)

Current DocID: GUID-BF463C51-FDCD-4186-A80D-A871742712BB_2_en-US

DOI: https://doi.org/10.31003/USPNF_M4709_02_01

DOI ref: 7t9fa

 $^{^{\}rm b} {\it N'-(1-Methylazepan-4-yl)} benzohydrazide \ hydrochloride; \ also \ known \ as \ 1-Benzoyl-2-[(4RS)-1-methylhexahydro-1 \\ {\it H-azepin-4-yl]} diazane.$

^c 2-[2-(4-Chlorophenyl)acetyl]benzoic acid.