Status: Currently Official on 13-Feb-2025
Official Date: Official as of 01-May-2023
Document Type: USP Monographs
DocId: GUID-2BFF2C73-38CC-4E57-9918-B60A22ED657E_6_en-US
DOI: https://doi.org/10.31003/USPNF_M1417_06_01
DOI Ref: s6j1r

© 2025 USPC Do not distribute

Atomoxetine Hydrochloride

Change to read:

C₁₇H₂₁NO · HCl

291.82

Benzenepropanamine, N-methyl-γ-(2-methylphenoxy)-, hydrochloride, (-);

(-)-N-Methyl-3-phenyl-3-(o-tolyloxy)propylamine hydrochloride;

 $^{\blacktriangle}$ (R)- $_{\blacktriangle}$ (USP 1-May-2023) N-Methyl-3-phenyl-3-(2-tolyloxy)propylamine hydrochloride CAS RN®: 82248-59-7; UNII: 57WVB6I2W0.

DEFINITION

Atomoxetine Hydrochloride contains NLT 98.0% and NMT 102.0% of atomoxetine hydrochloride (C_{1.7}H_{.1}NO · HCI), calculated on the dried basis.

IDENTIFICATION

- A. Spectroscopic Identification Tests (197), Infrared Spectroscopy: 197K
- **B.** The retention time of the major peak of the *Sample solution* corresponds to that of the atomoxetine *R*-isomer from the *System suitability solution*, as obtained in the test for *Organic Impurities, Procedure 2*.
- C. IDENTIFICATION TESTS—GENERAL (191), Chemical Identification Tests, Chloride: Meets the requirements

ASSAY

• PROCEDURE

Solution A: 280 g/L of potassium hydroxide in water

Buffer: 2.9 g/L of phosphoric acid in water. Adjust with Solution A to a pH of 2.5. To 1 L of this solution add 5.9 g of octanesulfonic acid sodium salt monohydrate.

Mobile phase: <u>n-Propyl alcohol</u> and <u>Buffer</u> (27:73). [Note—The ratio of <u>n-propyl alcohol</u> in <u>Buffer</u> can be varied between 26:74 and 29:71 to meet system suitability requirements.]

System suitability solution: 0.1 mg/mL of <u>USP Mandelic Acid RS</u>, 0.15 mg/mL of <u>USP Atomoxetine Related Compound A RS</u>, and 0.25 mg/mL of <u>USP Atomoxetine Hydrochloride RS</u> in *Mobile phase*

Standard solution: 0.25 mg/mL of <u>USP Atomoxetine Hydrochloride RS</u> in *Mobile phase*. Sonication may be used to aid in dissolution. **Sample solution:** 0.25 mg/mL of Atomoxetine Hydrochloride in *Mobile phase*. Sonication may be used to aid in dissolution.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 215 nm

Column: 4.6-mm × 15-cm; 3.5-µm packing L7

Column temperature: 40° Flow rate: 1 mL/minInjection volume: 10 µL

Run time: NLT 1.3 times the retention time of atomoxetine

System suitability

Samples: System suitability solution and Standard solution [Note—See <u>Table 1</u> for the relative retention times.]

Suitability requirements

Resolution: NLT 5.0 between mandelic acid and atomoxetine related compound A, System suitability solution

Tailing factor: NMT 1.5 for atomoxetine, *System suitability solution* **Relative standard deviation:** NMT 0.73%, *Standard solution*

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of atomoxetine hydrochloride ($C_{17}H_{21}NO \cdot HCI$) in the portion of Atomoxetine Hydrochloride taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times 100$$

= peak response of atomoxetine from the Sample solution

r_s = peak response of atomoxetine from the *Standard solution*

 $C_{\rm s}$ = concentration of <u>USP Atomoxetine Hydrochloride RS</u> in the Standard solution (mg/mL)

C₁₁ = concentration of Atomoxetine Hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: 98.0%-102.0% on the dried basis

IMPURITIES

• Residue on Ignition (281): NMT 0.1%

• ORGANIC IMPURITIES, PROCEDURE 1

[Note-It is required to perform Organic Impurities, Procedure 1 and Organic Impurities, Procedure 2.]

Buffer, Mobile phase, and **System suitability solution:** Prepare as directed in the *Assay*. **Sensitivity solution:** 0.0013 mg/mL of <u>USP Atomoxetine Hydrochloride RS</u> in *Mobile phase* **Standard solution:** 0.0025 mg/mL of <u>USP Atomoxetine Hydrochloride RS</u> in *Mobile phase*

Sample solution: 2.5 mg/mL of Atomoxetine Hydrochloride in *Mobile phase* **Chromatographic system:** Proceed as directed in the *Assay*, except for *Run time*.

Run time: NLT 2.6 times the retention time of atomoxetine

System suitability

Samples: System suitability solution, Sensitivity solution, and Standard solution

[Note—See <u>Table 1</u> for the relative retention times.]

Suitability requirements

Resolution: NLT 5.0 between mandelic acid and atomoxetine related compound A, System suitability solution

Tailing factor: NMT 1.5 for atomoxetine, System suitability solution

Relative standard deviation: NMT 5%, Standard solution **Signal-to-noise ratio:** NLT 10, Sensitivity solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of any individual impurity in the portion of Atomoxetine Hydrochloride taken:

Result =
$$(r_u/r_s) \times (C_s/C_u) \times 100$$

 r_{ij} = peak response of each individual impurity from the Sample solution

 $r_{\rm s}$ = peak response of atomoxetine from the Standard solution

C_s = concentration of <u>USP Atomoxetine Hydrochloride RS</u> in the Standard solution (mg/mL)

 C_{II} = concentration of Atomoxetine Hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: See $\underline{\textit{Table 1}}$. The reporting threshold is 0.05%.

Table 1

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Mandelic acid	0.20	0.10
Atomoxetine related compound A	0.27	0.10
Desmethyl atomoxetine ^a	0.73	0.3
Atomoxetine	1.0	_
Any individual unspecified impurity	-	0.10
Total impurities	-	0.5

^a (R)-N-Methyl-3-phenoxy-3-phenylpropan-1-amine.

• ORGANIC IMPURITIES, PROCEDURE 2

Mobile phase: Isopropyl alcohol, diethylamine, trifluoroacetic acid, and chromatographic solvent hexane (150: 1.5: 2.0: 846.5)

System suitability solution: 3.5 mg/mL of <u>USP Atomoxetine Hydrochloride RS</u>, 17.5 μg/mL of <u>USP Atomoxetine S-Isomer RS</u>, and 3.5 μg/mL of <u>USP Atomoxetine Related Compound B RS</u>, prepared by first dissolving the Reference Standards in <u>absolute alcohol</u>, using 25% of the final volume. Dilute with <u>chromatographic solvent hexane</u> to volume.

Sensitivity solution: 0.0018 mg/mL of <u>USP Atomoxetine Hydrochloride RS</u> prepared by first dissolving it in <u>absolute alcohol</u>, using 25% of the final volume. Dilute with <u>chromatographic solvent hexane</u> to volume.

Sample solution: 3.5 mg/mL of Atomoxetine Hydrochloride prepared by first dissolving it in <u>absolute alcohol</u>, using 25% of the final volume. Dilute with <u>chromatographic solvent hexane</u> to volume.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 273 nm

Column: 4.6-mm × 25-cm; 5-µm packing L40

Flow rate: 1 mL/min Injection volume: 10 µL

Run time: NLT 1.3 times the retention time of atomoxetine

System suitability

Samples: System suitability solution and Sensitivity solution

[Note—See <u>Table 2</u> for the relative retention times.]

Suitability requirements

Resolution: NLT 1.75 between atomoxetine S-isomer and atomoxetine related compound B, System suitability solution

Tailing factor: NMT 1.8 for atomoxetine, System suitability solution

Signal-to-noise ratio: NLT 10, Sensitivity solution

Analysis

Sample: Sample solution

Calculate the percentage of atomoxetine related compound B, atomoxetine related compound C, and atomoxetine S-isomer in the portion of Atomoxetine Hydrochloride taken:

Result =
$$(r_U/r_T) \times 100$$

 r_{ij} = peak response of each individual impurity from the Sample solution

 r_{τ} = sum of all the peak responses of atomoxetine related compound B, atomoxetine related compound C, atomoxetine S-isomer, and atomoxetine from the Sample solution

Acceptance criteria: See <u>Table 2</u>. The reporting threshold is 0.05%

Table 2

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Atomoxetine S-isomer	0.47	0.5
Atomoxetine related compound C ^a	0.52	0.1
Atomoxetine related compound B	0.56	0.1
Atomoxetine	1.0	-

a (R)-N-Methyl-3-phenyl-3-(4-tolyloxy)propan-1-amine; also known as (R)-N-Methyl-3-phenyl-3-(p-tolyloxy)propan-1-amine.

SPECIFIC TESTS

• Loss on Drying (731)

Analysis: Dry under vacuum at 105° for 2 h.

 $\textbf{Acceptance criteria:} \ NMT \ 0.5\%$

ADDITIONAL REQUIREMENTS

• Packaging and Storage: Preserve in well-closed containers. Store at room temperature.

Change to read:

• USP REFERENCE STANDARDS (11)

USP Atomoxetine Hydrochloride RS

https://trumgtamthuoc.com/

3-(Methylamino)-1-phenylpropan-1-ol. $C_{10}H_{15}NO$ 165.23

USP Atomoxetine Related Compound B RS

▲ (USP 1-May-2023)

(R)-N-Methyl-3-phenyl-3-(3-tolyloxy)propan-1-amine hydrochloride.

C₁₇H₂₁NO · HCl 291.82

▲ (USP 1-May-2023)

USP Atomoxetine S-Isomer RS

(S)-N-Methyl-3-phenyl-3-(2-tolyloxy)propan-1-amine hydrochloride; also known as (S)-N-Methyl-3-phenyl-3-(o-tolyloxy)propan-1-amine hydrochloride.

 $\mathrm{C_{17}H_{21}NO\cdot HCI}$ 291.82

USP Mandelic Acid RS

2-Hydroxy-2-phenylacetic acid. $C_8H_8O_3$

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
ATOMOXETINE HYDROCHLORIDE	Documentary Standards Support	SM42020 Small Molecules 4

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 47(4)

Current DocID: GUID-2BFF2C73-38CC-4E57-9918-B60A22ED657E_6_en-US

DOI: https://doi.org/10.31003/USPNF_M1417_06_01

DOI ref: s6j1r