USP-NF Atenolol

Status: Currently Official on 13-Feb-2025
Official Date: Official as of 01-May-2022
Document Type: USP Monographs
DocId: GUID-705B6AB1-93C9-4BDD-8E64-3EFE0896EA57_5_en-US
DOI: https://doi.org/10.31003/USPNF_M6330_05_01
DOI Ref: k8lv5

© 2025 USPC Do not distribute

Atenolol

Change to read:

 $C_{14}H_{22}N_2O_3$

266.34

Benzeneacetamide, 4-[2-hydroxy-3-[(1-methylethyl)amino]propoxy]-;

 $2\text{-}(\ ^{\blacktriangle}4_{\blacktriangle\ (USP\ 1\text{-}May\text{-}2022)}\text{-}[2\text{-}Hydroxy\text{-}3\text{-}(isopropylamino)propoxy}]\text{-}phenyl}\text{-}acetamide \quad CAS\ RN}^{\textcircled{\$}}\text{: }29122\text{-}68\text{-}7\text{; UNII}\text{: }50VV3VW0TI.$

DEFINITION

Atenolol contains NLT 98.0% and NMT 102.0% of atenolol ($C_{14}H_{22}N_2O_3$), calculated on the dried basis.

IDENTIFICATION

• A. Spectroscopic Identification Tests (197), Infrared Spectroscopy: 197K

Change to read:

• B. ▲The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay. ▲ (USP 1-May-2022)

ASSAY

Change to read:

• Procedure

▲Buffer: 3.4 g/L of <u>potassium phosphate, monobasic</u>, 1.25 g/L of <u>octanesulfonic acid sodium salt</u>, and 0.5 g/L of <u>tetrabutylammonium hydrogen sulfate</u>

0.8 M phosphoric acid solution: Dilute 5.2 mL of phosphoric acid in 100 mL of water.

Mobile phase: Methanol, tetrahydrofuran, and Buffer (18:2:80). Adjust with 0.8 M phosphoric acid solution to a pH of 3.0. **Standard solution:** 0.01 mg/mL of USP Atenolol RS in Mobile phase. Sonication may be necessary for complete dissolution. **Sample solution:** 0.01 mg/mL of Atenolol in Mobile phase. Sonication may be necessary for complete dissolution.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 226 nm

Column: 4.6-mm × 15-cm; 5-µm packing 11

Flow rate: 1 mL/min Injection volume: 10 μL

Run time: NLT 2 times the retention time of atenolol

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 0.73% (USP 1-May-2022)

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of atenolol (C₁₄H₂₂N₂O₃) in the portion of Atenolol taken:

Result =
$$(r_{ij}/r_{s}) \times (C_{s}/C_{ij}) \times 100$$

 r_{ij} = peak response of attended from the Sample solution

 $r_{\rm s}$ = peak response of atenolol from the Standard solution

 C_s = concentration of <u>USP Atenolol RS</u> in the *Standard solution* (mg/mL)

 C_{ii} = concentration of Atenolol in the Sample solution (mg/mL)

Acceptance criteria: 98.0%-102.0% on the dried basis

IMPURITIES

• Residue on Ignition (281): NMT 0.2%

Change to read:

• CHLORIDE AND SULFATE (221), Chloride

▲Standard solution: 1.4 mL of <u>0.020 N hydrochloric acid</u> in 100 mL of 0.15 N nitric acid_{▲ (USP 1-May-2022)}

Sample solution: 1.0 g in 100 mL of 0.15 N nitric acid

Acceptance criteria: [≜]The Sample solution shows no more turbidity with 1 mL of silver nitrate TS than the Standard solution_≜ (USP 1-May-2022) (0.1%).

Change to read:

• ORGANIC IMPURITIES

▲Buffer and **Mobile phase:** Prepare as directed in the Assay.

Impurity stock solutions 1–3: 0.1 mg/mL each of <u>USP Atenolol Related Compound A RS</u>, <u>USP Atenolol Related Compound B RS</u>, and <u>USP Atenolol Related Compound F RS</u> prepared as follows. Separately transfer an appropriate quantity of <u>USP Atenolol Related Compound A RS</u>, <u>USP Atenolol Related Compound B RS</u>, and <u>USP Atenolol Related Compound F RS</u> to individual suitable volumetric flasks. Add <u>methanol</u> to 10% of the final volume and sonicate to dissolve. Dilute with *Mobile phase* to volume.

Impurity stock solution 4: 0.1 mg/mL of <u>USP Atenolol Related Compound E RS</u> prepared as follows. Transfer an appropriate quantity of <u>USP Atenolol Related Compound E RS</u> to a suitable volumetric flask. Add <u>acetonitrile</u> to 50% of the final volume and sonicate to dissolve. Dilute with <u>water</u> to volume.

Sensitivity solution: 0.5 µg/mL of USP Atendol RS in Mobile phase

Standard solution: 0.01 mg/mL of <u>USP Atenolol RS</u> and 0.005 mg/mL each of <u>USP Atenolol Related Compound A RS</u>, <u>USP Atenolol Related Compound B RS</u>, <u>USP Atenolol Related Compound E RS</u>, and <u>USP Atenolol Related Compound F RS</u> from the corresponding *Impurity stock solution* in *Mobile phase*

Sample solution: 2 mg/mL of Atenolol in *Mobile phase* prepared as follows. Transfer a suitable amount of Atenolol to a suitable volumetric flask. Add *Mobile phase* to 50% of the final volume and sonicate to dissolve. Dilute with *Mobile phase* to volume.

Chromatographic system: Proceed as directed in the Assay, except for the Run time.

Run time: NLT 5 times the retention time of atenolol

System suitability

Samples: Sensitivity solution and Standard solution [Note—See <u>Table 1</u> for relative retention times.]

Suitability requirements

Resolution: NLT 2.0 between atenolol related compound B and atenolol related compound A, Standard solution

Relative standard deviation: NMT 2.0% for atenolol and NMT 5.0% each for atenolol related compounds A, B, E, and F, Standard solution

Signal-to-noise ratio: NLT 10, Sensitivity solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of atenolol related compounds A, B, E, and F in the portion of Atenolol taken:

Result =
$$(r_{ij}/r_{s}) \times (C_{s}/C_{ij}) \times 100$$

 r_{ij} = peak response of atenolol related compound A, B, E, or F from the Sample solution

 $r_{\rm s}$ = peak response of atenolol related compound A, B, E, or F from the Standard solution

 C_S = concentration of the corresponding Reference Standard in the Standard solution (mg/mL)

C₁₁ = concentration of Atenolol in the Sample solution (mg/mL)

Calculate the percentage of atenolol related compound G and any unspecified impurity in the portion of Atenolol taken:

Result =
$$(r_{IJ}/r_{S}) \times (C_{S}/C_{IJ}) \times (1/F) \times 100$$

 r_{ii} = peak response of atenolol related compound G or any unspecified impurity from the Sample solution

 $r_{\rm s}$ = peak response of atenolol from the Standard solution

C_s = concentration of <u>USP Atenolol RS</u> in the Standard solution (mg/mL)

 C_{ii} = concentration of Atenolol in the Sample solution (mg/mL)

= relative response factor for atenolol related compound G or any unspecified impurity (see <u>Table 1</u>)

Acceptance criteria: See <u>Table 1</u>. The reporting threshold is 0.025%.

Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Atenolol related compound B	0.31	_	0.15
Atenolol related compound A	0.41	_	0.15
Atenolol	1.0	-	_
Atenolol related compound E	1.72	-	0.15
Atenolol related compound F ^a	2.04 and 2.17	-	0.15
Atenolol related compound G ^b	3.58	0.84	0.15
Any unspecified impurity	_	1.00	0.10
Total impurities	-	-	0.50▲ (USP 1-May-2022)

^a For quantification purposes, integrate the doublet peaks of atenolol related compound F.

SPECIFIC TESTS

Delete the following:

Melting Range or Temperature, *Class I*(741): 152°−156.5° (USP 1-May-2022)

• Loss on Drying (731)

Analysis: Dry at 105° to constant weight.

Acceptance criteria: NMT 0.5%

ADDITIONAL REQUIREMENTS

Change to read:

• PACKAGING AND STORAGE: Preserve in well-closed containers. Store at ▲controlled ▲ (USP 1-May-2022) room temperature.

Change to read:

• USP Reference Standards $\langle 11 \rangle$

USP Atenolol RS

▲ <u>USP Atenolol Related Compound A RS</u>

 $\frac{-}{2-(4-Hydroxyphenyl)}$ acetamide. $\frac{-}{C_8H_9NO_2}$ 151.17

USP Atenolol Related Compound B RS

2-[4-(2,3-Dihydroxypropoxy)phenyl]acetamide.

C₁₁H₁₅NO₄ 225.24

USP Atenolol Related Compound E RS

2,2'-{[(2-Hydroxypropane-1,3-diyl)bis(oxy)]bis(4,1-phenylene)}diacetamide.

 $C_{19}H_{22}N_2O_5$ 358.

 $2,2'-[\{[(lsopropylazanediyl)bis(2-hydroxypropane-3,1-diyl)]bis(oxy)\}bis(4,1-phenylene)]diacetamide.\\$

 $C_{25}H_{35}N_3O_6$ 473.57 (USP 1-May-2022)

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
ATENOLOL	Documentary Standards Support	SM22020 Small Molecules 2

 $\textbf{Chromatographic Database Information:} \ \ \underline{\textbf{Chromatographic Database}}$

b 2-{4-[2-Hydroxy-3-(isopropylamino)propoxy]phenyl}acetic acid.

Current DocID: GUID-705B6AB1-93C9-4BDD-8E64-3EFE0896EA57_5_en-US

DOI: https://doi.org/10.31003/USPNF_M6330_05_01

DOI ref: k8lv5