Status: Currently Official on 13-Feb-2025 Official Date: Official as of 01-May-2020 Document Type: USP Monographs DocId: GUID-9ED7489C-043E-4F27-A0CD-333D4224D722_4_en-US DOI: https://doi.org/10.31003/USPNF_M4640_04_01 DOI Ref: sdc82

© 2025 USPC Do not distribute

Anagrelide Hydrochloride

 $C_{10}H_7CI_2N_3O \cdot HCI \cdot H_2O$ 310.56

292.55 CAS RN®: 58579-51-4; UNII: VNS4435G39. Anhydrous

Imidazo[2,1-b]quinazolin-2(3H)-one, 6,7-dichloro-1,5-dihydro-, monohydrochloride, monohydrate;

6,7-Dichloro-1,5-dihydroimidazo[2,1-b]-quinazolin-2(3H)-one monohydrochloride, monohydrate CAS RN®: 823178-43-4.

DEFINITION

Anagrelide Hydrochloride contains NLT 98.0% and NMT 102.0% of anagrelide hydrochloride (C₁₀H₂Cl₂N₂O · HCl), calculated on the anhydrous

IDENTIFICATION

Change to read:

- A. <u>Spectroscopic Identification Tests (197), Infrared Spectroscopy: 197K</u> (CN 1-May-2020)
- B. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.
- C. <u>IDENTIFICATION TESTS—GENERAL, Chloride(191)</u>: Meets the requirements

ASSAV

• PROCEDURE

Use freshly prepared standard and sample solutions and inject within 2 h.

Solution A: 6.8 g/L of monobasic potassium phosphate in water. Adjust with phosphoric acid to a pH of 2.5.

Mobile phase: Acetonitrile and Solution A (1:3)

Diluent: Acetonitrile and water (1:1)

Standard stock solution: 0.5 mg/mL of anagrelide hydrochloride in acetonitrile prepared as follows. Transfer USP Anagrelide Hydrochloride RS into a suitable volumetric flask, add a small amount of 2 N hydrochloric acid (3 drops per every 50 mL of the final volume) and acetonitrile equivalent to fill about 80% of the final volume. Sonicate to dissolve, and dilute with acetonitrile to volume.

Standard solution: 0.05 mg/mL of anagrelide hydrochloride in Diluent from Standard stock solution

Sample stock solution: Weigh Anagrelide Hydrochloride, equivalent to 25 mg of anhydrous salt, into a 50-mL volumetric flask, add 3 drops of 2 N hydrochloric acid and 40 mL of acetonitrile. Sonicate to dissolve, and dilute with acetonitrile to volume.

Sample solution: Transfer 5 mL of Sample stock solution to a 50-mL volumetric flask, and dilute with Diluent to volume.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 15-cm; 4-µm packing L11

Flow rate: 1.2 mL/min Injection volume: 20 µL System suitability

Sample: Standard solution **Suitability requirements**

Column efficiency: NLT 3000 theoretical plates

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Samples: Standard solution and Sample solution

Calculate the percentage of an grelide hydrochloride ($C_{10}H_7Cl_7N_3O\cdot HCl$) in the portion of An agrelide Hydrochloride taken:

Result =
$$(r_{ij}/r_{s}) \times (C_{s}/C_{ij}) \times 100$$

r, = peak response of anagrelide from the Sample solution

 r_s = peak response of an agrelide from the Standard solution

C_s = concentration of <u>USP Anagrelide Hydrochloride RS</u> in the *Standard solution* (mg/mL)

C₁₁ = concentration of Anagrelide Hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: 98.0%-102.0% on the anhydrous basis

IMPURITIES

• Residue on Ignition (281): NMT 0.1%

• ORGANIC IMPURITIES

Use freshly prepared standard and sample solutions and inject within 2 h.

Mobile phase: Proceed as directed in the Assay. **Diluent A:** Use the *Diluent* as described in the Assay.

Diluent B: Acetonitrile and water (1:3)

Standard stock solution A: 0.05 mg/mL of USP Anagrelide Related Compound A RS in Diluent A

Standard stock solution B: 0.05 mg/mL of anagrelide related compound B in acetonitrile. Transfer <u>USP Anagrelide Related Compound B RS</u> into a suitable volumetric flask, add acetonitrile equivalent to fill about 50% of the final volume and a small amount of 2 N hydrochloric acid (3 drops per 200 mL of the final volume). Sonicate to dissolve, heat in the hot water bath if necessary, and dilute with acetonitrile to volume.

Standard stock solution C: 0.1 mg/mL of anagrelide hydrochloride in acetonitrile. Transfer <u>USP Anagrelide Hydrochloride RS</u> into a suitable volumetric flask, add acetonitrile equivalent to fill about 80% of the final volume and a small amount of 0.12 N hydrochloric acid (1 mL per 100 mL of the final volume). Sonicate to dissolve, and dilute with acetonitrile to volume.

System suitability solution: 0.25 µg/mL of each of anagrelide related compound A and anagrelide related compound B in *Mobile phase* from Standard stock solution A and Standard stock solution B

Standard solution: 0.05 µg/mL of anagrelide hydrochloride in Mobile phase from Standard stock solution C

Sample stock solution: Weigh Anagrelide Hydrochloride, equivalent to 25 mg of anhydrous salt, into a 50-mL volumetric flask. Add 45 mL of acetonitrile, sonicate, and swirl the flask until the preparation turns into a cloudy liquid. Add 1 drop of 0.12 N hydrochloric acid, swirl the flask until the liquid turns to clear, and dilute with acetonitrile to volume.

Sample solution: Transfer 5 mL of Sample stock solution into a 50-mL volumetric flask, and dilute with Diluent B to volume.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 15-cm; 4-µm packing L11

Autosampler temperature: 5° Flow rate: 1.2 mL/min Injection volume: 50 µL System suitability

Samples: System suitability solution and Standard solution

Suitability requirements

Resolution: NLT 2.0 between an agrelide related compound B and an agrelide related compound A, System suitability solution

Column efficiency: NLT 3000 theoretical plates, Standard solution

Tailing factor: NMT 2.0, Standard solution

Relative standard deviation: NMT 10.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each impurity in the portion of Anagrelide Hydrochloride, on the anhydrous basis, taken:

Result =
$$(r_{I}/r_{S}) \times (C_{S}/C_{I}) \times (1/F) \times 100$$

 r_{ii} = peak response of each impurity from the Sample solution

r_e = peak response of anagrelide from the Standard solution

C_s = concentration of <u>USP Anagrelide Hydrochloride RS</u> in the *Standard solution* (mg/mL)

 C_{ii} = concentration of Anagrelide Hydrochloride (anhydrous) in the Sample solution (mg/mL)

F = relative response factor for each individual impurity (see <u>Table 1</u>)

Acceptance criteria See Table 1. Disregard any impurity peak less than 0.05%.

	Titipo.//trangtammaoo.o		
Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Anagrelide related compound B ^a	0.40	0.43	0.3
Anagrelide related compound A ^b	0.55	0.37	0.15
Anagrelide open ring methyl ester (if present) [©]	0.80	0.51	0.25
Anagrelide	1.00	1.0	_
Anagrelide related compound C ^d	1.41	0.32	0.15
Anagrelide trichloro derivative ^e	2.44	1.0	0.15
Any unspecified impurity	-	1.0	0.1
Total impurities	-		1.0

a (2-Amino-5,6-dichloroquinazolin-3(4*H*)-yl)acetic acid.

SPECIFIC TESTS

• Water Determination, Method I(921): 4.5%-7.5%

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in tight, light-resistant containers. Store in a cold place.

• USP Reference Standards (11)

USP Anagrelide Hydrochloride RS

USP Anagrelide Related Compound A RS

Ethyl 2-(6-amino-2,3-dichlorobenzylamino)acetate.

 $C_{11}H_{14}CI_{2}N_{2}O_{2}$ 277.

USP Anagrelide Related Compound B RS

 $(2\hbox{-}Amino\hbox{-}5,6\hbox{-}dichloroquinazolin-}3(4H)\hbox{-}yI) acetic acid.$

 $C_{10}H_9CI_2N_3O_2$ 274.10

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
ANAGRELIDE HYDROCHLORIDE	Documentary Standards Support	SM22020 Small Molecules 2

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 36(5)

Current DocID: GUID-9ED7489C-043E-4F27-A0CD-333D4224D722_4_en-US

DOI: https://doi.org/10.31003/USPNF_M4640_04_01

DOI ref: sdc82

b Ethyl 2-(6-amino-2,3-dichlorobenzylamino)acetate.

^c Methyl 2-(5,6 dichloro-2-imino-1,2-dihydroquinazolin-3(4*H*)-yl)acetate.

d Ethyl 2-(5,6-dichloro-2-imino-1,2-dihydroquinazolin-3(4*H*)-yl)acetate hydrobromide.

 $^{^{\}rm e}$ 6,7,8-Trichloro-3,5-dihydroimidazo[2,1-b]quinazolin-2(1H)-one.