

Status: Currently Official on 17-Feb-2025 Official Date: Official as of 01-Aug-2016 Document Type: USP Monographs DocId: GUID-2A4BE547-D9D3-4AD6-8105-F6624FFAEA74_1_en-US DOI: https://doi.org/10.31003/USPNF_M4974_01_01 DOI Ref: bo54z

© 2025 USPC Do not distribute

Amoxicillin and Clavulanic Acid Extended-Release Tablets

DEFINITION

Amoxicillin and Clavulanic Acid Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amounts of amoxicillin $(C_{1c}H_{1o}N_3O_5S)$ and clavulanic acid $(C_8H_0NO_5)$.

IDENTIFICATION

• A. The retention times of the major peaks of the Sample solution correspond to those of the Standard solution, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer: 6.9 g/L of monobasic sodium phosphate adjusted with phosphoric acid to a pH of 4.2

Mobile phase: Methanol and Buffer (5:95)

Standard solution: 1 mg/mL of <u>USP Amoxicillin RS</u> and 62.5 µg/mL of <u>USP Clavulanate Lithium RS</u> in water. Store the solution at 4°, and

inject within 10 h.

Sample solution: Equivalent to 1 mg/mL of amoxicillin and 62.5 μg/mL of clavulanic acid from finely powdered Tablets (NLT 6) in water. Stir for about 60 min. Store the solution at 4°, and inject within 12 h.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 229 nm

Column: 8-mm × 10-cm; 5-µm packing L1

Flow rate: 2 mL/minInjection volume: $20 \text{ }\mu\text{L}$ Autosampler temperature: 4°

System suitability

Sample: Standard solution **Suitability requirements**

Resolution: NLT 2.0 between the amoxicillin and clavulanic acid peaks **Tailing factor:** NMT 1.8 for the amoxicillin and clavulanic acid peaks

Relative standard deviation: NMT 1.0% for the amoxicillin and clavulanic acid peaks

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of amoxicillin $(C_{16}H_{19}N_3O_5S)$ in the portion of Tablets taken:

Result =
$$(r_{\perp}/r_{c}) \times (C_{c}/C_{\perp}) \times P \times F \times 100$$

 r_{ii} = response of amoxicillin from the Sample solution

r_s = response of amoxicillin from the Standard solution

C_s = concentration of <u>USP Amoxicillin RS</u> in the Standard solution (mg/mL)

 C_{II} = nominal concentration of amoxicillin in the Sample solution (mg/mL)

P = potency of amoxicillin in <u>USP Amoxicillin RS</u> (μg/mg)

F = conversion factor, 0.001 mg/μg

Calculate the percentage of the labeled amount of clavulanic acid (C_oH_oNO_c) in the portion of Tablets taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times P \times 100$$

 r_{ij} = response of clavulanic acid from the Sample solution

 $r_{\rm s}$ = response of clavulanic acid from the Standard solution

 C_s = concentration of <u>USP Clavulanate Lithium RS</u> in the *Standard solution* (µg/mL)

 $C_{_{U}}$ = nominal concentration of clavulanic acid in the Sample solution (µg/mL)

P = potency of clavulanic acid in <u>USP Clavulanate Lithium RS</u> (mg/mg)

Acceptance criteria: 90.0%-110.0%

PERFORMANCE TESTS

• **D**ISSOLUTION (711)

Test 1

Medium: Water; 900 mL **Apparatus 2:** 75 rpm

Times

Amoxicillin: 1, 3, and 5 h
Clavulanic acid: 1 h

Mobile phase, Chromatographic system, and System suitability: Proceed as directed in the Assay.

 $\textbf{Standard solution:} \ \underline{\textbf{USP Amoxicillin RS}} \ \text{and} \ \underline{\textbf{USP Clavulanate Lithium RS}} \ \text{in} \ \textit{Medium} \ \text{at known concentrations similar to those expected in the} \ \\ \textbf{Standard solution:} \ \underline{\textbf{USP Amoxicillin RS}} \ \text{and} \ \underline{\textbf{USP Clavulanate Lithium RS}} \ \text{in} \ \textit{Medium} \ \text{at known concentrations similar to those expected in the} \ \\ \textbf{Standard solution:} \ \underline{\textbf{USP Amoxicillin RS}} \ \text{and} \ \underline{\textbf{USP Clavulanate Lithium RS}} \ \text{in} \ \textit{Medium} \ \text{at known concentrations similar to those expected in the} \ \\ \textbf{Standard solution:} \ \underline{\textbf{USP Amoxicillin RS}} \ \text{and} \ \underline{\textbf{USP Clavulanate Lithium RS}} \ \text{in} \ \textit{Medium} \ \text{at known concentrations similar to those expected in the} \ \\ \textbf{Standard solution:} \ \underline{\textbf{USP Amoxicillin RS}} \ \text{and} \ \underline{\textbf{USP Clavulanate Lithium RS}} \ \text{in} \ \underline{\textbf{Medium}} \ \text{at known concentrations similar to those expected in the} \ \\ \textbf{Standard solution:} \ \underline{\textbf{USP Amoxicillin RS}} \ \text{and} \ \underline{\textbf{USP Clavulanate Lithium RS}} \ \text{in} \ \underline{\textbf{USP Clavulanate Lithium RS}} \ \underline{\textbf{USP Clavula$

Sample solution

Sample solution: Pass a portion of the solution under test through a suitable filter, and dilute with Medium, if necessary.

Analysis

Samples: Standard solution and Sample solution

Calculate the amounts of amoxicillin ($C_{16}H_{19}N_3O_5S$) and clavulanic acid ($C_8H_9NO_5$) dissolved.

Tolerances

Amoxicillin: The percentage of the labeled amount of amoxicillin (C_{1,c}H_{1,o}N₂O_sS) dissolved at the times specified conforms to <u>Table 1</u>.

Table 1

Time (h)	Amount Dissolved (%)
1	50-65
3	65-85
5	NLT 85

Clavulanic acid: NLT 80% (Q) of the labeled amount of clavulanic acid (C_gH_oNO_e) is dissolved in 1 h.

Test 2

Medium: Water; 900 mL **Apparatus 2:** 75 rpm

Times

Amoxicillin: 1, 3, and 5 h **Clavulanic acid:** 45 min

Mobile phase, Chromatographic system, and System suitability: Proceed as directed in the Assay.

Standard solution: <u>USP Amoxicillin RS</u> and <u>USP Clavulanate Lithium RS</u> in *Medium* at known concentrations similar to those expected in the *Sample solution*

Sample solution: Pass a portion of the solution under test through a suitable filter, and dilute with Medium, if necessary.

Analysis

Samples: Standard solution and Sample solution

 $Calculate \ the \ amounts \ of \ amoxicillin \ (C_{16}H_{19}N_3O_5S) \ and \ clavulanic \ acid \ (C_8H_9NO_5) \ dissolved.$

Tolerances

Amoxicillin: The percentage of the labeled amount of amoxicillin ($C_{16}H_{10}N_3O_5S$) dissolved at the times specified conforms to <u>Table 2</u>.

Table 2

Time (h)	Amount Dissolved (%)
1	50-70
3	65–90

Time (h)	Amount Dissolved (%)
5	NLT 85

Clavulanic acid: NLT 85% (Q) of the labeled amount of clavulanic acid ($C_gH_qNO_g$) is dissolved in 45 min.

• **Uniformity of Dosage Units** (905): Meet the requirements

IMPURITIES

• ORGANIC IMPURITIES

Buffer: 13.8 g/L of monobasic sodium phosphate in water adjusted with phosphoric acid to a pH of 4.2

Solution A: Methanol and Buffer (1:199) **Solution B:** Methanol and Buffer (10:90)

Mobile phase: See <u>Table 3</u>.

Table 3

Time (min)	Solution A (%)	Solution B (%)
0	100	0
8	70	30
13	70	30
13.01	40	60
18	40	60
18.01	100	0
25	100	0
30	100	0

[Note—These gradient elution times are established on an HPLC system with a dwell volume of approximately 5 mL. The gradient elution times in <u>Table 3</u> can be adjusted as necessary to achieve the separation described.]

System suitability solution: 0.4 mg/mL of <u>USP Amoxicillin RS</u> and 30 μg/mL of <u>USP Amoxicillin Related Compound D RS</u> in water. Store the solution at 4°.

Standard solution: 0.4 mg/mL of USP Amoxicillin RS in water. Store the solution at 4°, and inject within 24 h.

Sample solution: 1 mg/mL of amoxicillin and 62.5 µg/mL of clavulanic acid from finely powdered Tablets (NLT 2) in water. Stir for about 60 min. Store the solution at 4°, and use within 24 h.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm × 5-cm; 3-µm packing L1

Flow rate: $1.5 \, mL/min$ Injection volume: $20 \, \mu L$ Autosampler temperature: 4°

System suitability

Samples: System suitability solution and Standard solution

Suitability requirements

Resolution: NLT 1.25 between the amoxicillin and amoxicillin related compound D peaks at a relative retention time of 0.83, System

suitability solution

Tailing factor: NMT 1.8 for the amoxicillin peak, Standard solution

Relative standard deviation: NMT 1.0% for the amoxicillin peak, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each impurity in the portion of Tablets taken:

Result = $(r_1/r_2) \times (C_2/C_1) \times P \times F_1 \times (1/F_2) \times 100$

https://tipungtamthuoc.com/

- $r_{_{U}}~$ = response of each impurity from the Sample solution
- $r_{_{\rm S}}$ = response of amoxicillin from the Standard solution
- $C_{_{\rm S}}$ = concentration of <u>USP Amoxicillin RS</u> in the *Standard solution* (mg/mL)
- $C_{_{\!U}}^{}$ = nominal concentration of amoxicillin in the Sample solution (mg/mL)
- P = potency of amoxicillin in <u>USP Amoxicillin RS</u> (µg/mg)
- F_1 = conversion factor, 0.001 mg/ μ g
- F_2 = relative response factor (see <u>Table 4</u>)

Acceptance criteria: See <u>Table 4</u>. The reporting limit is 0.003%.

Table 4

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Amoxicillin related compound I (p-hydroxyphenyl glycine) ^{a.b}	0.15	_	-
Amoxicillin related compound A (6-aminopenicillanic acid) ^{a.c.}	0.30	_	-
Clavulanic acid	0.39		_
Amoxicillin related compound D (amoxicillin open ring) ^{a.d.e}	0.63	0.74	-
Amoxicillin related compound B (L-amoxicillin) ^{a.f}	0.78	_	_
Amoxicillin related compound D (amoxicillin open ring)de	0.83	0.74	2.5
Amoxicillin	1.0	_	_
Amoxicillin related compound G (b-hydroxyphenyl glycylamoxicillin) ^{a.g}	2.57	_	_
Amoxicillin related compound E (amoxicillin penilloic derivatives) ^{a.b.i}	2.63	_	-
Amoxicillin related compound C (amoxicillin rearrangement product) ^j	3.22	1.1	2.5
Amoxicillin open ring methyl ester ^{a,k}	3.38	-	_

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Amoxicillin related compound J (amoxicillin open ring dimer)	4.07	1.0	4.5
Any individual unspecified impurity	-	_	0.5

^a These are synthetic process impurities, which are controlled in the drug substance. They are listed here for reference only and are not to be reported.

- d The chromatographic system resolves two isomers of amoxicillin open ring.
- e (4S)-2-{[(R)-2-Amino-2-(4-hydroxyphenyl)acetamido](carboxy)methyl}-5,5-dimethylthiazolidine-4-carboxylic acid.
- f (2S,5R,6R)-6-[(S)-2-Amino-2-(4-hydroxyphenyl)acetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid.
- ⁹ (2S,5R,6R)-6-{(R)-2-[(R)-2-Amino-2-(4-hydroxyphenyl)acetamido]-2-(4-hydroxyphenyl)acetamido}-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo [3.2.0]heptane-2-carboxylic acid.
- h The chromatographic system resolves two amoxicillin penilloic derivatives.
- $^{\rm i} \ \ (4S)\text{-}2\text{-}\{[(R)\text{-}2\text{-}Amino\text{-}2\text{-}(4\text{-}hydroxyphenyl})\text{acetamido}] \\ \text{methyl}\}\text{-}5,5\text{-}dimethylthiazolidine\text{-}4\text{-}carboxylic acid.}$
- ^j (4S)-2-[5-(4-Hydroxyphenyl)-3,6-dioxopiperazin-2-yl]-5,5-dimethylthiazolidine-4-carboxylic acid.
- k (4S)-2-[[(R)-2-Amino-2-(4-hydroxyphenyl)acetamido]methoxycarbonylmethyl}-5,5-dimethylthiazolidine-4-carboxylic acid.
- (2S,5R,6R)-6-((2R)-2-{2-[(R)-2-Amino-2-(4-hydroxyphenyl)acetamido]-2-[(4S)-4-carboxy-5,5-dimethylthiazolidin-2-yl]acetamido)-2-(4-hydroxyphenyl)acetamido)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid.

SPECIFIC TESTS

• MICROBIAL ENUMERATION TESTS (61) and TESTS FOR SPECIFIED MICROORGANISMS (62): The total aerobic microbial count does not exceed 10³ cfu/g, and the total combined molds and yeasts count does not exceed 10² cfu/g.

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in tight containers and store at controlled room temperature.
- LABELING: When more than one Dissolution test is given, the labeling states the test used only if Test 1 is not used.
- USP REFERENCE STANDARDS (11)

USP Amoxicillin RS

USP Amoxicillin Related Compound D RS

 $(4S)-2-\{[(R)-2-Amino-2-(4-hydroxyphenyl)acetamido](carboxy) methyl\}-5, 5-dimethylthiazolidine-4-carboxylic acid.$

 $C_{16}H_{21}N_3O_6S$ 383.42

USP Clavulanate Lithium RS

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
AMOXICILLIN AND CLAVULANIC ACID EXTENDED-RELEASE TABLETS	Documentary Standards Support	SM12020 Small Molecules 1
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM12020 Small Molecules 1

Chromatographic Database Information: <u>Chromatographic Database</u>

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 38(2)

Current DocID: GUID-2A4BE547-D9D3-4AD6-8105-F6624FFAEA74_1_en-US

DOI: https://doi.org/10.31003/USPNF_M4974_01_01

DOI ref: bo54z

b (R)-2-Amino-2-(4-hydroxyphenyl)acetic acid.

^c (2S,5R,6R)-6-Amino-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0] heptane-2-carboxylic acid.