
Status: Currently Official on 17-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-FBD61A47-CD6C-4B10-A4EE-130C2419CE5C_2_en-US
DOI: https://doi.org/10.31003/USPNF_M4070_02_01
DOI Ref: 5znx2

© 2025 USPC Do not distribute

Amoxapine

C₁₇H₁₆CIN₂O 313.78

Dibenz[b,f][1,4]oxazepine, 2-chloro-11-(1-piperazinyl)-;

2-Chloro-11-(1-piperazinyl)dibenz[b,f][1,4]oxazepine CAS RN $^{\otimes}$: 14028-44-5; UNII: R63VQ8570T.

DEFINITION

Amoxapine contains NLT 98.0% and NMT 102.0% of amoxapine (C₁₇H₁₆ClN₂O), calculated on the dried basis.

IDENTIFICATION

Change to read:

- A. Spectroscopic Identification Tests (197), Infrared Spectroscopy: 197K (CN 1-May-2020)
- B. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer: 3.9 g/L of ammonium acetate in water adjusted with acetic acid or diluted ammonia solution to a pH of 7.3

Mobile phase: Acetonitrile and *Buffer* (30:70) **Diluent:** Acetonitrile and *Buffer* (70:30)

System suitability solution: 0.1 mg/mL each of USP Amoxapine RS and USP Amoxapine Related Compound G RS in Diluent

Standard solution: 0.1 mg/mL of <u>USP Amoxapine RS</u> in *Diluent*

Sample solution: 0.1 mg/mL of Amoxapine in Diluent

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 7.5-cm; 2.5-µm or 2.7-µm packing L1

Column temperature: 35° Flow rate: 1.2 mL/min Injection volume: $10 \text{ } \mu\text{L}$

System suitability

Samples: System suitability solution and Standard solution

[Note—The relative retention times for amoxapine and amoxapine related compound G are 1.0 and 1.3, respectively.]

Suitability requirements

Resolution: NLT 1.5 between amoxapine and amoxapine related compound G, System suitability solution

Tailing factor: 0.8–1.8, Standard solution

Relative standard deviation: NMT 0.73%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of amoxapine (C₁₇H₁₆ClN₃0) in the portion of Amoxapine taken:

Result = $(r_{IJ}/r_{S}) \times (C_{S}/C_{IJ}) \times 100$

r,, = peak response of amoxapine from the Sample solution

 r_s = peak response of amoxapine from the Standard solution

 $C_{\rm S}$ = concentration of <u>USP Amoxapine RS</u> in the *Standard solution* (mg/mL)

C₁₁ = concentration of Amoxapine in the Sample solution (mg/mL)

Acceptance criteria: 98.0%-102.0% on the dried basis

IMPURITIES

• Residue on Ignition (281): NMT 0.1%

• ORGANIC IMPURITIES

Solution A: 3.9 g/L of ammonium acetate in water adjusted with acetic acid or diluted ammonia solution to a pH of 7.3

Solution B: Acetonitrile **Mobile phase:** See <u>Table 1</u>.

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	70	30
5	70	30
7.5	60	40
15	60	40
20	20	80
25	20	80
30	70	30
35	70	30

Diluent: Solution A and Solution B (30:70)

System suitability solution: 1 mg/mL of <u>USP Amoxapine RS</u> and 1.5 μg/mL of <u>USP Amoxapine Related Compound G RS</u> in *Diluent*Standard solution: 1 μg/mL of <u>USP Amoxapine RS</u>, and 1.5 μg/mL each of <u>USP Amoxapine Related Compound G RS</u> and <u>USP Amoxapine Related Compound D RS</u> in *Diluent*

Sample solution: 1000 μg/mL of Amoxapine in *Diluent* **Chromatographic system:** Proceed as directed in the *Assay*.

System suitability

Samples: System suitability solution and Standard solution [Note—See <u>Table 2</u> for the relative retention times.]

Suitability requirements

Peak-to-valley ratio: NLT 3 between amoxapine and amoxapine related compound G, System suitability solution

Relative standard deviation: NMT 5.0% each for amoxapine, amoxapine related compound G, and amoxapine related compound D, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of amoxapine related compound G and amoxapine related compound D in the portion of Amoxapine taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

r_{ii} = peak response of amoxapine related compound G or amoxapine related compound D from the Sample solution

 $r_{_{
m S}}$ $\,$ = peak response of amoxapine related compound G or amoxapine related compound D from the Standard solution

 C_S = concentration of <u>USP Amoxapine Related Compound G RS</u> or <u>USP Amoxapine Related Compound D RS</u> in the *Standard solution* (µg/mL)

 C_{μ} = concentration of Amoxapine in the Sample solution (µg/mL)

Calculate the percentage of any other impurity in the portion of Amoxapine taken:

Result =
$$(r_u/r_s) \times (C_s/C_u) \times 100$$

r₁₁ = peak response of any other impurity from the Sample solution

 $r_{\rm s}$ = peak response of amoxapine from the Standard solution

 C_s = concentration of <u>USP Amoxapine RS</u> in the Standard solution (µg/mL)

 C_{ij} = concentration of Amoxapine in the Sample solution (µg/mL)

Acceptance criteria: See Table 2. Disregard peaks that are less than 0.02% of the amoxapine peak.

Table 2

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Chlorophenoxyaniline urea		
analog ^a	0.57	0.10
Amoxapine	1.0	-
Amoxapine related compound G	1.4	0.15
Amoxapine related compound D	1.7	0.15
Chlorophenoxyaniline ^b	2.9	0.10
Chlorophenoxyaniline carbamate [©]	3.8	0.10
N-Carbamoyl		
amoxapine ^d	4.3	0.10
Amoxapine dimer ^{<u>e</u>}	5.0	0.10
Any individual		
unspecified impurity		0.10
Total impurities	-	0.50

^a N-[2-(4-Chlorophenoxy)phenyl]piperazine-1-carboxamide.

SPECIFIC TESTS

Loss on Drying (731)

Analysis: Dry at 105° for 4 h. **Acceptance criteria:** NMT 0.5%

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in tight containers.

• USP REFERENCE STANDARDS (11)

USP Amoxapine RS

USP Amoxapine Related Compound D RS

 $\hbox{2-Chlorodibenzo} \hbox{\it [b,f]-[1,4]-oxazepin-11-one.}$

C₁₃H₈CINO₂ 245.66

USP Amoxapine Related Compound G RS

3-Chloro-11-(piperazin-1-yl)dibenzo[b,f][1,4]oxazepine.

C₁₇H₁₆CIN₃O 313.78

b 2-(4-Chlorophenoxy)aniline.

^c Ethyl [2-(4-Chlorophenoxy)phenyl]carbamate.

 $^{^{\}rm d} \ \ 4\text{-}(2\text{-}Chlorodibenzo[\textit{b,f}][1,4]oxazepin-11\text{-}\textit{yl})-\textit{N-}[2\text{-}(4\text{-}chlorophenoxy)phenyl]piperazine-1-carboxamide.}$

e 1,4-Bis(2-chlorodibenzo[b,f][1,4]oxazepine-11-yl)piperazine.

https://titungtamthuoc.com/

USP-NF Amoxapine

Topic/Question	Contact	Expert Committee
AMOXAPINE	Documentary Standards Support	SM42020 Small Molecules 4
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM42020 Small Molecules 4

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 41(1)

Current DocID: GUID-FBD61A47-CD6C-4B10-A4EE-130C2419CE5C_2_en-US

DOI: https://doi.org/10.31003/USPNF_M4070_02_01

DOI ref: 5znx2