Status: Currently Official on 17-Feb-2025
Official Date: Official as of 01-Dec-2023
Document Type: USP Monographs
DocId: GUID-AC02CA18-BFE5-4EF9-9D2C-34E02CD36767_5_en-US
DOI: https://doi.org/10.31003/USPNF_M3049_05_01
DOI Ref: nqp51

© 2025 USPC Do not distribute

Amlodipine and Valsartan Tablets

DEFINITION

Amlodipine and Valsartan Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of amlodipine ($C_{20}H_{25}CIN_2O_5$) and valsartan ($C_{24}H_{20}N_5O_3$).

IDENTIFICATION

- A. The UV absorption spectra of the major peaks of Sample solution A and Sample solution B and those of the Standard solution exhibit maxima and minima at the same wavelengths, as obtained in the Assay.
- **B.** The retention times of the major peaks of *Sample solution A* and *Sample solution B* correspond to those of the *Standard solution*, as obtained in the *Assay*.

ASSAY

• PROCEDURE

Solution A: Water and triethylamine (1000:10). Adjust with phosphoric acid to a pH of 2.8.

Solution B: Methanol and acetonitrile (700:300)

Mobile phase: See <u>Table 1</u>.

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	50	50
3	50	50
15	30	70
20	30	70
20.1	50	50
25	50	50

Diluent: Solution A and Solution B (50:50)

Standard solution: 0.14 mg/mL of <u>USP Amlodipine Besylate RS</u> and 0.16 mg/mL of <u>USP Valsartan RS</u>. Add <u>methanol</u> to 5% of the final volume to dissolve, and dilute with *Diluent* to volume.

Sample stock solution: Transfer NLT 10 Tablets into a suitable volumetric flask. Initially add water to 10% of the final volume, and sonicate to disperse as needed. Add *Diluent*, using about 70% of the final volume, and shake for up to 45 min to disperse. Following dispersion, sonicate for 15 min, and shake for 30 min. Dilute with *Diluent* to volume to obtain a solution containing known nominal concentrations of 0.1–0.2 mg/mL of amlodipine and 1.6–6.4 mg/mL of valsartan. Centrifuge the solution for about 10 min at 3000 rpm.

Sample solution A: Nominally equivalent to 0.1 mg/mL of amlodipine in Diluent from the Sample stock solution

Sample solution B: Nominally equivalent to 0.16 mg/mL of valsartan in Diluent from the Sample stock solution

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 237 nm. For *Identification A*, use a diode array detector in the range of 200–400 nm.

Column: 3.9-mm × 15-cm; 5-µm packing L1

Temperatures
Autosampler: 10°
Column: 30°
Flow rate: 1.0 mL/min

Injection volume: 10 µL

System suitability

Sample: Standard solution **Suitability requirements**

Tailing factor: NMT 1.5 for both amlodipine and valsartan

Relative standard deviation: NMT 2.0% for amlodipine and valsartan

Analysis

Samples: Standard solution, Sample solution A, and Sample solution B

Calculate the percentage of the labeled amount of amlodipine $(C_{20}H_{25}CIN_2O_5)$ in the portion of Tablets taken:

Result =
$$(r_{11}/r_{s}) \times (C_{s}/C_{11}) \times (M_{r1}/M_{r2}) \times 100$$

 $r_{_U}$ = peak response of amlodipine from Sample solution A

 r_s = peak response of amlodipine from the Standard solution

 $C_{\rm s}$ = concentration of <u>USP Amlodipine Besylate RS</u> in the *Standard solution* (mg/mL)

C₁₁ = nominal concentration of amlodipine in Sample solution A (mg/mL)

 M_{r_1} = molecular weight of amlodipine, 408.88

 M_{c2} = molecular weight of amlodipine besylate, 567.05

Calculate the percentage of the labeled amount of valsartan $(C_{24}H_{29}N_{\epsilon}O_{2})$ in the portion of Tablets taken:

Result =
$$(r_u/r_s) \times (C_s/C_u) \times 100$$

r,, = peak response of valsartan from Sample solution B

r_s = peak response of valsartan from the Standard solution

C_s = concentration of <u>USP Valsartan RS</u> in the *Standard solution* (mg/mL)

C, = nominal concentration of valsartan in Sample solution B (mg/mL)

Acceptance criteria: 90.0%-110.0%

PERFORMANCE TESTS

• Dissolution (711)

Test 1

Buffer: Dissolve 6.805 g of monobasic potassium phosphate and 0.896 g of sodium hydroxide in water, and dilute with water to 1000 mL.

Adjust with 0.2 N sodium hydroxide or 1 M phosphoric acid to a pH of 6.8.

Medium: *Buffer*; 1000 mL **Apparatus 2:** 75 rpm

Time: 30 min

Mobile phase: Acetonitrile, water, and trifluoroacetic acid (500:500:2)

Diluent: 1 mg/mL of polysorbate 80 in Buffer

System suitability solution: 0.4 mg/mL each of <u>USP Amlodipine Besylate RS</u> and <u>USP Valsartan RS</u>, prepared as follows. Initially dissolve in <u>methanol</u> to 40% of the total volume, and dilute with *Buffer* to volume.

Standard stock solution A: 0.072 mg/mL of <u>USP Amlodipine Besylate RS</u>, prepared as follows. Initially dissolve in <u>methanol</u> to 4% of the final volume, and dilute with *Diluent* to volume.

Standard stock solution B: 2.2 mg/mL of <u>USP Valsartan RS</u> in <u>methanol</u>

Standard solution: $(L_{\gamma}/1000)$ mg/mL of amlodipine and $(L_{\gamma}/1000)$ mg/mL of valsartan in *Diluent* from *Standard stock solution A* and *Standard stock solution B*, where L_{γ} is the label claim of amlodipine in mg/Tablet, and L_{γ} is the label claim of valsartan in mg/Tablet

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size. Discard the first 10 mL of the filtrate.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm × 15-cm; 4-µm packing L11

Column temperature: 40° Flow rate: 1.2 mL/min Injection volume: 10 µL

Run time: NLT 2 times the retention time of amlodipine

System suitability

Samples: System suitability solution and Standard solution

Suitability requirements

Resolution: NLT 2.0 between amlodipine and valsartan, System suitability solution

Tailing factor: NMT 2.0 for amlodipine and valsartan, Standard solution

Relative standard deviation: NMT 2.0% for amlodipine and valsartan, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of amlodipine (C₂₀H₂₅CIN₂O₅) dissolved:

Result =
$$(r_1/r_c) \times C_c \times V \times (M_{c1}/M_{c2}) \times (1/L_1) \times 100$$

 r_{ij} = peak response of amlodipine from the Sample solution

r_s = peak response of amlodipine from the *Standard solution*

C_s = concentration of <u>USP Amlodipine Besylate RS</u> in the Standard solution (mg/mL)

V = volume of Medium, 1000 mL

 M_{c1} = molecular weight of amlodipine, 408.88

 M_{22} = molecular weight of amlodipine besylate, 567.05

L₁ = label claim of amlodipine (mg/Tablet)

Calculate the percentage of the labeled amount of valsartan (${\rm C_{24}H_{29}N_5O_3}$) dissolved:

Result =
$$(r_{II}/r_{S}) \times C_{S} \times V \times (1/L_{2}) \times 100$$

 $r_{_{U}}$ = peak response of valsartan from the Sample solution

 r_s = peak response of valsartan from the Standard solution

C_s = concentration of <u>USP Valsartan RS</u> in the *Standard solution* (mg/mL)

V = volume of Medium, 1000 mL

 L_2 = label claim of valsartan (mg/Tablet)

Tolerances: NLT 80% (Q) of the labeled amount of amlodipine $(C_{20}H_{25}CIN_2O_5)$ and valsartan $(C_{24}H_{29}N_5O_3)$ is dissolved.

Test 2: If the product complies with this test, the labeling indicates that the product meets USP Dissolution Test 2.

Medium and Time: Proceed as directed in Dissolution Test 1; 1000 mL.

Apparatus 2: 50 rpm

Buffer: Mix 7.0 mL of triethylamine with 1000 mL of water. Adjust with phosphoric acid to a pH of 3.0.

Solution A: Acetonitrile and Buffer (10:90) **Solution B:** Acetonitrile and Buffer (90:10)

Mobile phase: See <u>Table 2</u>.

Table 2

Time (min)	Solution A (%)	Solution B (%)
0	80	20
7	30	70
8	80	20
10	80	20

Standard stock solution A: 0.14 mg/mL of <u>USP Amlodipine Besylate RS</u>, prepared as follows. Initially dissolve in 10% of the final volume of <u>methanol</u>, and dilute with *Medium* to volume.

Standard stock solution B: 1.6 mg/mL of <u>USP Valsartan RS</u> in <u>methanol</u>

Standard solution: $(L_{\gamma}/1000)$ mg/mL of amlodipine and $(L_{\gamma}/1000)$ mg/mL of valsartan in Medium from Standard stock solution A and $Standard\ stock\ solution\ B$, where $L_{_1}$ is the label claim of amlodipine in mg/Tablet, and $L_{_2}$ is the label claim of valsartan in mg/Tablet

Sample solution: Pass a portion of the solution under test through a suitable filter of 1-µm pore size.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 237 nm

Column: 4.6-mm × 15-cm; 5-µm packing L1

Temperatures Autosampler: 10° Column: 50° Flow rate: 1.5 mL/min Injection volume: 20 µL **System suitability**

Sample: Standard solution **Suitability requirements**

Tailing factor: NMT 2.0 for amlodipine and valsartan

Relative standard deviation: NMT 2.0% for amlodipine and valsartan

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of amlodipine (C₂₀H₂₅ClN₂O₅) dissolved:

Result =
$$(r_{11}/r_{S}) \times C_{S} \times V \times (M_{r1}/M_{r2}) \times (1/L_{1}) \times 100$$

= peak response of amlodipine from the Sample solution r_{U}

= peak response of amlodipine from the Standard solution

 C_{s} = concentration of <u>USP Amlodipine Besylate RS</u> in the Standard solution (mg/mL)

= volume of Medium, 1000 mL

M, = molecular weight of amlodipine, 408.88

= molecular weight of amlodipine besylate, 567.05 M_{r2}

= label claim of amlodipine (mg/Tablet)

Calculate the percentage of the labeled amount of valsartan (C₂₄H₂₉N₅O₃) dissolved:

Result =
$$(r_{U}/r_{s}) \times C_{s} \times V \times (1/L_{2}) \times 100$$

= peak response of valsartan from the Sample solution

= peak response of valsartan from the Standard solution

= concentration of <u>USP Valsartan RS</u> in the Standard solution (mg/mL)

= volume of Medium, 1000 mL

= label claim of valsartan (mg/Tablet)

Tolerances: NLT 75% (Q) of the labeled amount of amlodipine $(C_{20}H_{25}CIN_2O_5)$ is dissolved and NLT 80% (Q) of the labeled amount of valsartan (${\rm C_{24}H_{29}N_5O_3}$) is dissolved.

Test 3: If the product complies with this test, the labeling indicates that the product meets USP Dissolution Test 3.

Medium, Apparatus 2, and Time: Proceed as directed in Dissolution Test 1.

Solution A: Acetonitrile, trifluoroacetic acid, and water (10:0.1:90) Solution B: Acetonitrile, trifluoroacetic acid, and water (90:0.1:10)

Mobile phase: See <u>Table 3</u>.

Table 3

Time (min)	Solution A (%)	Solution B (%)
0.01	90	10
2.5	10	90
3.0	90	10
5.0	90	10

Diluent: Acetonitrile and water (50:50)

Standard stock solution A: 0.14 mg/mL of <u>USP Amlodipine Besylate RS</u>, prepared as follows. Initially dissolve in *Diluent* about 4% of the final volume, and dilute with *Medium* to volume.

Standard stock solution B: 1.6 mg/mL of <u>USP Valsartan RS</u>, prepared as follows. Initially dissolve in about 20% of the final volume of *Diluent*, and dilute with *Medium* to volume.

Standard solution: $(L_{\gamma}/1000)$ mg/mL of amlodipine and $(L_{2}/1000)$ mg/mL of valsartan in *Medium* from *Standard stock solution A* and *Standard stock solution B*, where L_{γ} is the label claim of amlodipine in mg/Tablet, and L_{γ} is the label claim of valsartan in mg/Tablet

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size and discard the first few milliliters of the filtrate.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 237 nm for amlodipine and UV 270 nm for valsartan

Column: 4.6-mm × 10-cm; 5-µm packing L1

Flow rate: 1.5 mL/minInjection volume: $10 \text{ }\mu\text{L}$

System suitability
Sample: Standard solution
Suitability requirements

Tailing factor: NMT 2.0 for amlodipine and valsartan

Relative standard deviation: NMT 2.0% for amlodipine and valsartan

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of amlodipine (C₂₀H₂₅CIN₂O₅) dissolved:

Result =
$$(r_1/r_s) \times C_s \times V \times (M_{r_1}/M_{r_2}) \times (1/L_1) \times 100$$

 $r_{_U}$ = peak response of amlodipine from the Sample solution

r_s = peak response of amlodipine from the Standard solution

 C_S = concentration of <u>USP Amlodipine Besylate RS</u> in the Standard solution (mg/mL)

V = volume of Medium, 1000 mL

 M_{21} = molecular weight of amlodipine, 408.88

 M_{r2} = molecular weight of amlodipine besylate, 567.05

 L_1 = label claim of amlodipine (mg/Tablet)

Calculate the percentage of the labeled amount of valsartan $(C_{24}H_{29}N_5O_3)$ dissolved:

Result =
$$(r_{II}/r_{S}) \times C_{S} \times V \times (1/L_{2}) \times 100$$

 r_{ij} = peak response of valsartan from the Sample solution

 r_s = peak response of valsartan from the Standard solution

C_s = concentration of <u>USP Valsartan RS</u> in the *Standard solution* (mg/mL)

V = volume of Medium, 1000 mL

 L_2 = label claim of valsartan (mg/Tablet)

USP-NF Amlodipine and Valsartan Tablets https://trungtamthuoc.com/

Tolerances: NLT 75% (Q) of the labeled amount of amlodipine (C₂₀H₂₅CIN₂O₅) is dissolved and NLT 80% (Q) of the labeled amount of valsartan $(C_{24}H_{29}N_5O_3)$ is dissolved.

• UNIFORMITY OF DOSAGE UNITS (905): Meet the requirements

IMPURITIES

Change to read:

• ORGANIC IMPURITIES

Mobile phase, Diluent, Sample solution A, Sample solution B, and Chromatographic system: Proceed as directed in the Assay. Standard stock solution A: Prepare as directed for the Standard solution in the Assay.

System suitability solution: Dissolve a suitable quantity of USP Valsartan Related Compound B RS in Standard stock solution A to obtain a solution containing 0.08 mg/mL of USP Valsartan Related Compound B RS, 0.14 mg/mL of USP Amlodipine Besylate RS, and 0.16 mg/mL of USP Valsartan RS.

Sensitivity solution: 0.14 µg/mL of USP Amlodipine Besylate RS and 0.16 µg/mL of USP Valsartan RS in Diluent from Standard stock solution

Standard stock solution B: 0.1 mg/mL of USP Amlodipine Related Compound A RS as free base, prepared as follows. Add methanol to 5% of the final volume to dissolve, and dilute with Diluent to volume.

Standard solution: 0.0005 mg/mL of USP Amlodipine Related Compound A RS as free base, and 0.0003 mg/mL each of USP Amlodipine Besylate RS and USP Valsartan RS in Diluent from Standard stock solution A and Standard stock solution B, respectively

System suitability

Samples: System suitability solution, Sensitivity solution, and Standard solution

Suitability requirements

Resolution: More than 4.0 between amlodipine and valsartan related compound B and more than 4.0 between valsartan related compound B and valsartan, System suitability solution

Relative standard deviation: NMT 5.0% for amlodipine related compound A, amlodipine, and valsartan, Standard solution

Signal-to-noise ratio: NLT 10 for amlodipine and valsartan, Sensitivity solution

Analysis

Samples: Sample solution A, Sample solution B, and Standard solution

Calculate the percentage of amlodipine related compound A free base in the portion of Tablets taken:

Result =
$$(r_{I}/r_{S}) \times (C_{S}/C_{IJ}) \times (M_{r1}/M_{r2}) \times 100$$

= peak response of amlodipine related compound A from Sample solution A r_{U}

= peak response of amlodipine related compound A from the Standard solution

 C_{ς} = concentration of <u>USP Amlodipine Related Compound A RS</u> in the Standard solution (mg/mL)

= nominal concentration of amlodipine in Sample solution A (mg/mL)

= molecular weight of amlodipine related compound A free base, 406.86

M₁₂ = molecular weight of amlodipine related compound A fumarate, ▲522.94 (CN 1-Dec-2023)

Calculate the percentage of valsartan related degradation products other than valsartan related compound A in the portion of Tablets taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times 100$$

= peak response of valsartan related degradation product from Sample solution B

= peak response of valsartan from the Standard solution

= concentration of <u>USP Valsartan RS</u> in the Standard solution (mg/mL)

= nominal concentration of valsartan in Sample solution B (mg/mL)

Calculate the percentage of each unspecified degradation product in the portion of Tablets taken:

Result =
$$(r_{I}/r_{S}) \times (C_{S}/C_{IJ}) \times (M_{r1}/M_{r2}) \times 100$$

= peak response of each unspecified degradation product from Sample solution A r_{ii}

= peak response of amlodipine from the Standard solution

= concentration of <u>USP Amlodipine Besylate RS</u> in the Standard solution (mg/mL)

C, = nominal concentration of amlodipine in Sample solution A (mg/mL)

 M_{r_1} = molecular weight of amlodipine, 408.88

 M_{r_2} = molecular weight of amlodipine besylate, 567.05

Acceptance criteria: See <u>Table 4</u>. Disregard valsartan related compound B, the benzenesulfonic acid peak at relative retention time 0.19, and any peaks below 0.1%.

Table 4

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Devaleryl valsartan ^a	0.24	0.2
Amlodipine related compound A ^b	0.50	0.5
Valsartan related degradation product 1 ^c	0.54	0.2
Valsartan related degradation product 2 ^c	0.81	0.2
Amlodipine	1.00	_
Valsartan related compound B ^d	1.34	_
Valsartan related degradation product 3 ²	1.44	0.2
Valsartan	1.74	_
Valsartan related degradation product 4 [©]	2.06	0.2
Valsartan ethyl ester ^e	2.32	0.2
Any other unspecified degradation product	-	0.2
Total degradation products ^f	_	1.2; 2.0, if valsartan related compound A is a potential degradation product

^a $N-\{[2'-(1H-Tetrazole-5-yl)biphenyl-4-yl]methyl\}-L-valine.$

• LIMIT OF VALSARTAN RELATED COMPOUND A

[Note—Valsartan related compound A is a process impurity and a formulation-specific degradation product.]

Mobile phase: n-Hexane, 2-propanol, and trifluoroacetic acid (850:150:1)

 $\textbf{System suitability solution:} \ 0.04 \ \text{mg/mL each of USP Valsartan Related Compound A and } \underline{\textbf{USP Valsartan RS}} \ \text{in } \textit{Mobile phase}$

Standard solution: 0.001 mg/mL of <u>USP Valsartan Related Compound A RS</u> in *Mobile phase*

Sample solution: Nominally 0.5 mg/mL of valsartan in *Mobile phase* from a suitable amount of finely crushed powder from NLT 20 Tablets. Sonication may be necessary for complete dissolution. Pass through a suitable filter of 0.45-µm pore size.

^b 3-Ethyl 5-methyl [2-(2-aminoethoxymethyl)-4-(2-chlorophenyl)-6-methyl-3,5-pyridinedicarboxylate].

^c These are specified unidentified degradation products. No information is available about chemical structures or chemical names for these impurities.

 $^{^{\}rm d} \quad \textit{N-} Butyryl-\textit{N-}\{[2'-(1\textit{H-}tetrazole-5-yl)biphenyl-4-yl]methyl\}-{\tiny L-}valine.$

^e N-Valeryl-N-{[2'-(1*H*-tetrazole-5-yl)biphenyl-4-yl]methyl}-L-valine ethyl ester.

^f If valsartan related compound A is a potential degradation product, the total degradation products limit does not include valsartan related compound A and amlodipine related compound A.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm × 25-cm; 5-µm packing L40

Temperatures
Autosampler: 10°
Column: 30°
Flow rate: 0.8 mL/min

Injection volume: 20 µL

Run time: NLT 3.5 times the retention time of valsartan related compound A

System suitability

Samples: System suitability solution and Standard solution

[Note—The relative retention times for valsartan related compound A and valsartan are about 0.7 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 2.0 between valsartan and valsartan related compound A, System suitability solution

Relative standard deviation: NMT 5.0% for valsartan related compound A, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of valsartan related compound A in the portion of Tablets taken:

Result =
$$(r_{II}/r_{s}) \times (C_{s}/C_{II}) \times 100$$

 r_{ij} = peak response of valsartan related compound A from the Sample solution

 $r_{\rm s}$ = peak response of valsartan related compound A from the Standard solution

 C_s = concentration of <u>USP Valsartan Related Compound A RS</u> in the Standard solution (mg/mL)

 C_{ij} = nominal concentration of valsartan in the Sample solution (mg/mL)

Acceptance criteria: NMT 1.0%

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Store at controlled room temperature, in tight containers, and in a dry place.
- LABELING: When more than one Dissolution test is given, the labeling states the Dissolution test used only if Test 1 is not used.

Change to read:

• USP REFERENCE STANDARDS (11)

USP Amlodipine Besylate RS

USP Amlodipine Related Compound A RS

3-Ethyl 5-methyl [2-(2-aminoethoxymethyl)-4-(2-chlorophenyl)-6-methyl-3,5-pyridinedicarboxylate] fumarate.

USP Valsartan RS

USP Valsartan Related Compound A RS

 $^{\blacktriangle}N-\{[2'-(1H-Tetrazol-5-yl)biphenyl-4-yl]methyl\}-N-pentanoyl-D-valine._{$_{\parallel}(CN\ 1-Dec-2023)}$

$$C_{24}H_{29}N_5O_3$$
 435.53 (CN 1-Dec-2023)

USP Valsartan Related Compound B RS

N-Butyryl-N-{[2'-(1H-tetrazole-5-yl)biphenyl-4-yl]methyl}-L-valine.

$$C_{23}H_{27}N_5O_3$$
 $^{4}21.50_{(CN 1-Dec-2023)}$

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
AMLODIPINE AND VALSARTAN TABLETS	Documentary Standards Support	SM22020 Small Molecules 2
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM22020 Small Molecules 2

 ${\bf Chromatographic\ Database\ Information:\ } \underline{{\bf Chromatographic\ Database}}$

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 43(2)

Current DocID: GUID-AC02CA18-BFE5-4EF9-9D2C-34E02CD36767_5_en-US

DOI: https://doi.org/10.31003/USPNF_M3049_05_01

DOI ref: nqp51

