Status: Currently Official on 17-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-56619137-5947-4386-961B-232DEBAB580A_2_en-US
DOI: https://doi.org/10.31003/USPNF_M3032_02_01
DOI Ref: dwk4y

© 2025 USPC Do not distribute

Aminolevulinic Acid Hydrochloride

C_EH₀NO₂·HCl

167.59

5-Aminolevulinic acid hydrochloride;

5-Amino-4-oxopentanoic acid hydrochloride CAS RN®: 5451-09-2.

DEFINITION

Aminolevulinic Acid Hydrochloride contains NLT 98.0% and NMT 102.0% of aminolevulinic acid hydrochloride ($C_5H_9NO_3 \cdot HCI$), calculated on the dried basis.

IDENTIFICATION

Change to read:

- A. <u>Spectroscopic Identification Tests (197), Infrared Spectroscopy: 197A or 197K</u> (CN 1-May-2020)
- B. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.
- C. <u>IDENTIFICATION TESTS—GENERAL, Chloride (191)</u>: Meets the requirements

ASSAY

• PROCEDURE

Solution A: Water adjusted with 2 M sulfuric acid to a pH of 2.2

Mobile phase: See Table 1.

Table 1

Time (min)	Solution A (%)	Methanol (%)
0	95	5
2	95	5
6	60	40
8	60	40
9	95	5
23	95	5

Diluent: Methanol and Solution A (1:3)

Standard solution: 4 mg/mL of USP Aminolevulinic Acid Hydrochloride RS in Diluent

Sample solution: 4 mg/mL of Aminolevulinic Acid Hydrochloride in Diluent

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 2.1-mm \times 10-cm; 1.7- μ m packing L1

Flow rate: 0.4 mL/minInjection volume: $5 \mu L$ System suitability

Sample: Standard solution

https://trumgtamthuoc.com/

Suitability requirements

Tailing factor: NMT 1.6

Relative standard deviation: NMT 0.73%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of aminolevulinic acid hydrochloride (C_sH_oNO₃·HCI) in the portion of Aminolevulinic Acid Hydrochloride taken:

Result =
$$(r_{II}/r_c) \times (C_c/C_{II}) \times 100$$

 r_{ij} = peak response from the Sample solution

 $r_{\rm s}$ = peak response from the Standard solution

C_s = concentration of <u>USP Aminolevulinic Acid Hydrochloride RS</u> in the Standard solution (mg/mL)

C₁₁ = concentration of Aminolevulinic Acid Hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: 98.0%-102.0% on the dried basis

IMPURITIES

• Residue on Ignition (281): NMT 0.3%

ORGANIC IMPURITIES

Mobile phase, Diluent, and Chromatographic system: Proceed as directed in the Assay.

Standard solution: 0.04 mg/mL each of <u>USP Aminolevulinic Acid Hydrochloride RS</u>, <u>USP Aminolevulinic Acid Related Compound A RS</u>, and <u>USP Aminolevulinic Acid Related Compound B RS</u> in *Diluent*

Sample solution: 40 mg/mL of Aminolevulinic Acid Hydrochloride in Diluent

System suitability

Sample: Standard solution **Suitability requirements**

Relative standard deviation: NMT 10%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of aminolevulinic acid related compound A or aminolevulinic acid related compound B in the portion of Aminolevulinic Acid Hydrochloride taken:

Result =
$$(r_{IJ}/r_{S}) \times (C_{S}/C_{IJ}) \times 100$$

 r_{ij} = peak response of each impurity from the Sample solution

 $r_{\rm s}$ = peak response of the corresponding USP Reference Standard from the Standard solution

 $C_{\rm s}$ = concentration of the corresponding USP Reference Standard in the Standard solution (mg/mL)

 $C_{_U}$ = concentration of Aminolevulinic Acid Hydrochloride in the Sample solution (mg/mL)

Calculate the percentage of any unspecified impurity eluting before aminolevulinic acid related compound A in the portion of Aminolevulinic Acid Hydrochloride taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times 100$$

r,, = peak response of any unspecified impurity eluting before aminolevulinic acid related compound A from the Sample solution

r_s = peak response of aminolevulinic acid from the *Standard solution*

 C_S = concentration of <u>USP Aminolevulinic Acid Hydrochloride RS</u> in the *Standard solution* (mg/mL)

C₁₁ = concentration of Aminolevulinic Acid Hydrochloride in the Sample solution (mg/mL)

Calculate the percentage of any unspecified impurity eluting after aminolevulinic acid related compound A in the portion of Aminolevulinic Acid Hydrochloride taken:

Result =
$$(r_u/r_s) \times (C_s/C_u) \times 100$$

r_{r,} = peak response of any unspecified impurity eluting after aminolevulinic acid related compound A from the Sample solution

 $r_{\rm s}$ = peak response of aminolevulinic acid related compound A from the Standard solution

 $C_{_{\rm S}}$ = concentration of <u>USP Aminolevulinic Acid Related Compound A RS</u> in the *Standard solution* (mg/mL)

C₁₁ = concentration of Aminolevulinic Acid Hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: See Table 2. Disregard any impurity peak less than 0.05%.

Table 2

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Aminolevulinic acid	1.0	-
Aminolevulinic acid related compound A	7.8	0.15
Aminolevulinic acid related compound B	12.0	0.15
Any individual unspecified impurity	_	0.10
Total impurities	_	0.5

SPECIFIC TESTS

• PH (791)

Sample solution: 10 mg/mL in carbon dioxide-free water

Acceptance criteria: 2.5-2.9

• Loss on Drying (731)

Sample: 1 g

Analysis: Dry the Sample over phosphorous pentoxide under vacuum at 100°-105° for 5 h.

Acceptance criteria: NMT 0.5%

ADDITIONAL REQUIREMENTS

• Packaging and Storage: Preserve in well-closed containers, and store at room temperature.

• USP REFERENCE STANDARDS (11)

USP Aminolevulinic Acid Hydrochloride RS
USP Aminolevulinic Acid Related Compound A RS
3,3'-(Pyrazine-2,5-diyl)dipropionic acid.

 $C_{10}H_{12}N_2O_4$ 224.22

USP Aminolevulinic Acid Related Compound B RS

Methyl 5-(1,3-dioxoisoindolin-2-yl)-4-oxopentanoate.

 $C_{14}H_{13}NO_5$ 275.26

Auxiliary Information - Please check for your question in the FAOs before contacting USP.

Topic/Question	Contact	Expert Committee
AMINOLEVULINIC ACID HYDROCHLORIDE	Documentary Standards Support	SM32020 Small Molecules 3
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM32020 Small Molecules 3

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 40(2)

Current DocID: GUID-56619137-5947-4386-961B-232DEBAB580A_2_en-US

DOI: https://doi.org/10.31003/USPNF_M3032_02_01

DOI ref: dwk4y