Status: Currently Official on 13-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: NF Monographs
Docld: GUID-93806F87-1D09-4385-8B6B-4C5889932273_4_en-US
DOI: https://doi.org/10.31003/USPNF_M2676_04_01
DOI Ref: 7u2ca

© 2025 USPC Do not distribute

Amino Methacrylate Copolymer

$$R = \begin{array}{c} OR \\ O \longrightarrow CH_3 \\ N \\ CH_3 \end{array} \quad \text{or} \quad \\ CH_3 \\ O \longrightarrow CH_3 \qquad \text{or} \quad \\ CH_3 \\ O \longrightarrow CH_3 \qquad \text{or} \quad \\ CH_3 \\ O \longrightarrow CH_3 \qquad \text{or} \quad \\ CH_3 \\ O \longrightarrow CH_3 \qquad \text{or} \quad \\ CH_3 \\ O \longrightarrow CH_3 \qquad \text{or} \quad \\ CH_3 \\ O \longrightarrow CH_3 \qquad \text{or} \quad \\ CH_3 \\ O \longrightarrow CH_3 \qquad \text{or} \quad \\ CH_3 \\ O \longrightarrow CH_3 \qquad \text{or} \quad \\ CH_3 \\ O \longrightarrow CH_3 \qquad \text{or} \quad \\ CH_3 \\ O \longrightarrow CH_4 \\ O \longrightarrow CH_5 \\$$

Ratio: $CH_2CH_3N(CH_3)_2:C_4H_9:CH_3=2:1:1$

Poly((2-dimethylaminoethyl)methacrylate, butyl methacrylate, methyl methacrylate) (2:1:1);

N,N-Dimethylaminoethyl methacrylate-butyl methacrylate-methyl methacrylate copolymer (2:1:1)

CAS RN[®]: 24938-16-7.

DEFINITION

Amino Methacrylate Copolymer is a polymerized copolymer of (2-dimethylaminoethyl) methacrylate, butyl methacrylate, and methyl methacrylate. It contains NLT 20.8% and NMT 25.5% of dimethylaminoethyl groups ($C_aH_{10}N$), calculated on the dried basis.

IDENTIFICATION

Change to read:

• A. <u>ASPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy: 197K</u> (CN 1-MAY-2020)

• В.

Sample solution: 1 mL of the Sample solution in the test for Viscosity

Analysis: Pour the Sample solution onto a glass plate, and allow the solvent to evaporate.

Acceptance criteria: A clear, colorless film results.

ASSAY

• Procedure

Sample: 200 mg

Blank: 4 mL of water and 96 mL of glacial acetic acid

Titrimetric system (See <u>Titrimetry (541)</u>.)

Mode: Direct titration

Titrant: 0.1 N perchloric acid VS **Endpoint detection:** Potentiometric

Analysis: Dissolve the *Sample* in a mixture of 4 mL of water and 96 mL of glacial acetic acid. Titrate with the *Titrant* to a potentiometric endpoint. Perform a blank determination.

Calculate the percentage of dimethylaminoethyl groups $(C_4H_{10}N)$ in the portion of the sample taken:

Result ={
$$[(V_c - V_p) \times N \times F]/W$$
} × 100

 V_s = Titrant volume consumed by the Sample (mL)

 $V_B = Titrant$ volume consumed by the Blank (mL)

N = actual normality of the Titrant (mEq/mL)

F = equivalency factor, 72.1 mg/mEq

W = Sample weight (mg)

Acceptance criteria: 20.8%-25.5% on the dried basis

IMPURITIES

• Residue on Ignition (281): NMT 0.1%

• LIMIT OF BUTYL METHACRYLATE AND METHYL METHACRYLATE

Buffer: 8.9 g/L of anhydrous dibasic sodium phosphate and 8.5 g/L of monobasic potassium phosphate. Adjust with phosphoric acid to a pH of 2.0. This is pH 2.0 phosphate buffer (0.0625 M).

Mobile phase: Methanol and *Buffer* (55:45) **Diluent:** Acetonitrile and *Buffer* (40:60)

Standard solution: Dissolve 20 mg of butyl methacrylate and 10 mg of methyl methacrylate in 3 mL of *n*-butanol. Dilute with *Diluent* to 10 mL. Dilute 1.0 mL of this solution with *Diluent* to 250.0 mL, and mix. This solution contains about 8 µg/mL of butyl methylcrylate and 4 µg/mL of

methyl methacrylate.

Sample solution: 20 mg/mL of Amino Methacrylate Copolymer in Diluent

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 205 nm

Column: 4.6-mm × 12-cm; packing L1

Flow rate: 2 mL/min Injection volume: 50 µL

System suitability Sample: Standard solution

Suitability requirements

Resolution: NLT 10 between butyl methacrylate and methyl methacrylate

Relative standard deviation: NMT 3.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each monomer in the portion of Amino Methacrylate Copolymer taken:

Result =
$$(r_{ij}/r_{s}) \times (C_{s}/C_{ij}) \times F \times 100$$

 r_{ii} = peak response of each monomer (butyl methacrylate or methyl methacrylate) from the Sample solution

r_s = peak response of each monomer (butyl methacrylate or methyl methacrylate) from the Standard solution

C_s = concentration of each monomer (butyl methacrylate or methyl methacrylate) in the Standard solution (µg/mL)

C, = concentration of Amino Methacrylate Copolymer in the Sample solution (mg/mL)

F = conversion factor, 10^{-3} mg/µg

Acceptance criteria: NMT 0.1% for each monomer

• LIMIT OF 2-DIMETHYLAMINOETHYL METHACRYLATE

Buffer: 3.4 g/L of monobasic potassium phosphate. This is the monobasic potassium phosphate solution (0.025 M).

Mobile phase: Tetrahydrofuran and Buffer (75:25)

Standard solution: $8 \mu g/mL$ of 2-dimethylaminoethyl methacrylate in tetrahydrofuran **Sample solution:** 20 mg/mL of Amino Methacrylate Copolymer in tetrahydrofuran

Chromatographic system

(See <u>Chromatography (621), System Suitability</u>.)

Mode: LC

Detector: UV 215 nm

Column: 4.6-mm × 12-cm; packing L8

Flow rate: 2 mL/min Injection volume: 50 µL System suitability

Sample: Standard solution
Suitability requirements

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of 2-dimethylaminoethyl methacrylate in the portion of Amino Methacrylate Copolymer taken:

Result = $(r_{ij}/r_{s}) \times (C_{s}/C_{ij}) \times F \times 100$

= peak response of 2-dimethylaminoethyl methacrylate from the Sample solution

r_o = peak response of 2-dimethylaminoethyl methacrylate from the Standard solution

C_s = concentration of 2-dimethylaminoethyl methacrylate in the Standard solution (µg/mL)

 C_{ii} = concentration of Amino Methacrylate Copolymer in the Sample solution (mg/mL)

 $F = \text{conversion factor, } 10^{-3} \text{ mg/}\mu\text{g}$

Acceptance criteria: NMT 0.1%

SPECIFIC TESTS

• VISCOSITY—ROTATIONAL METHODS (912)

Sample solution: Dissolve 12.5 g in a mixture of 35.0 g of acetone and 52.5 g of isopropyl alcohol. [Note—Reserve a portion of this solution for the *Color of Solution* test.]

Analysis: Equip a suitable rotational viscometer with an adapter comprising a cylindrical spindle rotating within an accurately machined chamber (or tube). Pipet the *Sample solution* in the specified volume, which is recommended by the instrument manufacturer, into the chamber (or tube), and ensure that the temperature of the test specimen is at 20 ± 0.1°. The cylindrical spindle rotates at the value of rpm, which corresponds to a rate of shear of approximately 37 s⁻¹. Measure the apparent viscosity following the instrument manufacturer's directions.

Acceptance criteria: Viscosity, 3-6 mPa · s

• Color of Solution

Sample solution: Use the Sample solution prepared in the test for Viscosity.

Instrumental conditions

(See <u>Ultraviolet-Visible Spectroscopy (857)</u>.)

Mode: Vis

Analytical wavelength: 420 nm

Cell: 1 cm

Analysis: Determine the absorbance of the Sample, using water as the blank.

Acceptance criteria: NMT 0.300

• Loss on Drying (731)

Analysis: Dry a sample at 110° for 3 h. **Acceptance criteria:** NMT 2.0%

ADDITIONAL REQUIREMENTS

- Packaging and Storage: Preserve in tight containers, and store at a temperature below 30°.
- USP REFERENCE STANDARDS (11) USP Amino Methacrylate Copolymer RS

¹ A commercial device is available from Brookfield as an ultra-low (UL) viscosity adapter. The adapter comprises a 0.4-cm diameter shaft, an accurately machined chamber (or tube) with an internal diameter of 2.8 cm and a depth of 13.5 cm, and a cylindrical spindle 2.5 cm in diameter and 9.1 cm in height.

² For the Brookfield UL adapter, the cylindrical spindle rotates at 30 rpm, which corresponds to a rate of shear of approximately 37 s⁻¹.

 $\textbf{Auxiliary Information} \cdot \textbf{Please} \ \underline{\textbf{check for your question in the FAQs}} \ \textbf{before contacting USP.}$

Topic/Question	Contact	Expert Committee
AMINO METHACRYLATE COPOLYMER	Documentary Standards Support	CE2020 Complex Excipients

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 34(2)

Current DocID: GUID-93806F87-1D09-4385-8B6B-4C5889932273_4_en-US

DOI: https://doi.org/10.31003/USPNF_M2676_04_01

DOI ref: 7u2cq