Status: Currently Official on 17-Feb-2025
Official Date: Official as of 01-Jun-2023
Document Type: USP Monographs
DocId: GUID-D2EB3CC2-C77C-4E2A-8622-3D615C7C2D8D_5_en-US
DOI: https://doi.org/10.31003/USPNF_M2062_05_01
DOI Ref: osf72

© 2025 USPC Do not distribute

Aluminum Dichlorohydrate Solution

DEFINITION

Aluminum Dichlorohydrate Solution consists of complex basic aluminum chloride that is polymeric and encompasses a range of aluminum-to-chloride atomic ratios between 0.90:1 and 1.25:1. The following solvents may be used: water, propylene glycol, dipropylene glycol, or alcohol. It contains the equivalent of NLT 90.0% and NMT 110.0% of the labeled concentration of anhydrous aluminum dichlorohydrate (Al_y(OH)_{3y}.

 $_{z}CI_{z}$).

IDENTIFICATION

• A. IDENTIFICATION TESTS—GENERAL, Aluminum(191) and Chloride(191)

Sample solution: Nominally equivalent to 100 mg/mL of anhydrous aluminum dichlorohydrate

Acceptance criteria: Meets the requirements

• B. Spectroscopic IDENTIFICATION TESTS (197), Infrared Spectroscopy: 197F (where propylene glycol is indicated on the label)

Sample solution: Add 10 mL of isopropyl alcohol to 2 g of Solution, and filter. Evaporate the filtrate to 1 mL on a steam bath. Deposit this solution on a silver chloride disk.

Standard solution: A similar preparation of propylene glycol

Acceptance criteria: Meets the requirements

• C. Spectroscopic IDENTIFICATION TESTS (197), Infrared Spectroscopy: 197F (where dipropylene glycol is indicated on the label)

Sample solution: Add 10 mL of isopropyl alcohol to 2 g of Solution, and filter. Evaporate the filtrate to 1 mL on a steam bath. Deposit this solution on a silver chloride disk.

Standard solution: A similar preparation of dipropylene glycol

Acceptance criteria: Meets the requirements

• D. IDENTIFICATION OF ALCOHOL

Perform this test where alcohol is stated on the label.

Analysis: Mix 5 drops of Solution in a small beaker with 1 mL of potassium permanganate solution (1 in 100) and 5 drops of 2 N sulfuric acid, and cover the beaker immediately with filter paper moistened with a freshly prepared solution of 0.1 g of sodium nitroferricyanide and 0.25 g of piperazine in 5 mL of water.

Acceptance criteria: An intense blue color is produced on the filter paper, the color becoming paler after a few min.

ASSAY

• PROCEDURE 1: CONTENT OF CHLORIDE Sample: 1.4 g of Solution Titrimetric system Mode: Direct titration

Titrant: 0.1 N silver nitrate VS

Electrode system: A silver-silver chloride glass electrode and a silver billet electrode system

Endpoint detection: Potentiometric

Analysis: Transfer the *Sample* to a 250-mL beaker, and add 100 mL of water and 10 mL of diluted nitric acid with stirring. Titrate with *Titrant*, and determine the endpoint.

Acceptance criteria: Each mL of 0.1 N silver nitrate is equivalent to 3.545 mg of chloride (CI). Use the chloride content thus obtained to calculate the aluminum/chloride atomic ratio.

• Procedure 2: Content of Aluminum

Edetate disodium titrant: Prepare and standardize as directed in *Reagents, Volumetric Solutions, Edetate Disodium, Twentieth-Molar (0.05 M)*, except use 37.2 g of edetate disodium.

Sample solution: Transfer 400 mg of Solution to a 250-mL beaker, add 20 mL of water and 5 mL of hydrochloric acid, boil on a hot plate for NLT 5 min, and allow to cool.

Titrimetric system

Mode: Back titration

Titrant: 0.1 M zinc sulfate VS **Endpoint detection:** Visual

Analysis: To the *Sample solution* add 25.0 mL of *Edetate disodium titrant*, and adjust with 2.5 N ammonium hydroxide or 1 N acetic acid to a pH of 4.7 ± 0.1. Add 20 mL of acetic acid–ammonium acetate buffer TS, 50 mL of alcohol, and 5 mL of dithizone TS. The pH of this solution

should be 4.7 ± 0.1 . Titrate excess edetate disodium with *Titrant* until the color changes from green-violet to rose-pink. Perform a blank titration, and make any necessary correction.

Acceptance criteria: Each mL of 0.1 M *Edetate disodium titrant* consumed is equivalent to 2.698 mg of aluminum (Al). Use the aluminum content thus obtained to calculate the aluminum/chloride atomic ratio.

• PROCEDURE 3: ALUMINUM/CHLORIDE ATOMIC RATIO

Analysis: Use the percentage of aluminum found in *Content of Aluminum* and the percentage of chloride found in *Content of Chloride*. Calculate the aluminum/chloride atomic ratio (*X*) as follows:

Result =
$$(P_{AI}/P_{CI}) \times (A_{CI}/A_{AI})$$

 P_{Al} = percentage of aluminum found in Content of Aluminum

P_{cl} = percentage of chloride found in Content of Chloride

 A_{CI} = atomic weight of chlorine (CI), 35.453

 A_{AI} = atomic weight of aluminum (AI), 26.98

Acceptance criteria: 0.90:1 to 1.25:1

• Procedure 4

Analysis: Calculate the percentage of the labeled concentration of anhydrous aluminum dichlorohydrate (Al_y(OH)_{3y-z}Cl_z) in the portion of

Result =
$$P_{AI} \times \{ [A_A X + (M(3X - 1)) + A_{CI}] / A_A X \}$$

 P_{AI} = percentage of aluminum found in Content of Aluminum

 A_{AI} = atomic weight of aluminum (Al), 26.98

X = aluminum/chloride atomic ratio, as determined in Aluminum/Chloride Atomic Ratio

M = molecular weight of the hydroxide anion (OH), 17.01

 A_{ci} = atomic weight of chlorine (Cl), 35.453

Acceptance criteria: 90.0%-110.0%

IMPURITIES

Change to read:

• ▲ ARSENIC (211), Procedures, Procedure 1: (CN 1-Jun-2023) NMT 2 ppm

Change to read:

• LIMIT OF IRON

Standard preparation: 2.0 mL of Standard Iron Solution, prepared as directed in Alron (241), Procedures, Procedure 1 (CN 1-Jun-2023)

Test preparation: Transfer 5.3 g of Solution to a 100-mL volumetric flask, and dilute with water to volume.

Analysis: Transfer 2.0 mL of the Standard preparation into a 50-mL beaker. Transfer 5.0 mL of the Test preparation into a second 50-mL beaker. To each of the beakers add 5 mL of 6 N nitric acid, cover with a watch glass, and boil on a hot plate for 3−5 min. Allow to cool. Add 5 mL of Ammonium Thiocyanate Solution, prepared as directed in \[^\delta_{lron (241), Procedures, Procedure 1}_\delta_(CN 1-Jun-2023)\), transfer to separate 50-mL color-comparison tubes, and dilute with water to volume.

Acceptance criteria: 75 ppm; the color of the solution from the Test preparation is not darker than that from the Standard preparation.

SPECIFIC TESTS

• **PH** (791)

Sample solution: Dilute 3 g of Solution with water to 10 mL.

Acceptance criteria: 3.0-5.0

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE: Preserve in well-closed containers.
- LABELING: Label Solution to state the solvent used and the claimed concentration of anhydrous aluminum dichlorohydrate contained therein.

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
ALUMINUM DICHLOROHYDRATE SOLUTION	Documentary Standards Support	SM32020 Small Molecules 3

https://ትተungtamthuoc.com/

USP-NF Aluminum Dichlorohydrate Solution

Topic/Question	Contact	Expert Committee
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM32020 Small Molecules 3

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. Information currently unavailable

Current DocID: GUID-D2EB3CC2-C77C-4E2A-8622-3D615C7C2D8D_5_en-US

DOI: <u>https://doi.org/10.31003/USPNF_M2062_05_01</u>

DOI ref: osf72