Status: Currently Official on 13-Feb-2025
Official Date: Official as of 01-May-2017
Document Type: USP Monographs
DocId: GUID-30C4B537-E2F1-457D-8C6C-EA85A6AADDC0_2_en-USD0: https://doi.org/10.31003/USPNF_M743_02_01
DOI Ref: qz6sh

© 2025 USPC Do not distribute

Alprazolam Extended-Release Tablets

DEFINITION

Alprazolam Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of alprazolam (C₁₇H₁₃CIN₄).

IDENTIFICATION

- A. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.
- B. The UV spectrum of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

• PROCEDURE

Mobile phase: Acetonitrile, water, and phosphoric acid (350:650:1) **Standard solution:** 0.05 mg/mL of <u>USP Alprazolam RS</u> in methanol

Sample solution: Nominally 0.05 mg/mL of alprazolam prepared as follows. Transfer an appropriate number of Tablets to a suitable volumetric flask. Sonicate in 80% of the flask volume of methanol for 15 min, and shake mechanically for 30 min. Dilute with methanol to final volume, filter a portion of the solution, and discard the first 3 mL of filtrate.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm. For *Identification B*, use a diode array detector in the range of 200-400 nm.

Column: 4.6-mm × 15-cm; 5-µm packing L7

Column temperature: 30° Flow rate: 1 mL/min Injection volume: 10 μL System suitability

Sample: Standard solution Suitability requirements Tailing factor: NMT 2.0

Column efficiency: NLT 3000 theoretical plates

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of alprazolam (C₁₇H₁₃ClN₄) in the portion of Tablets taken:

Result =
$$(r_{ij}/r_{s}) \times (C_{s}/C_{ij}) \times 100$$

 r_{ij} = peak response from the Sample solution

 r_s = peak response from the Standard solution

 C_s = concentration of <u>USP Alprazolam RS</u> in the Standard solution (mg/mL)

C₁₁ = nominal concentration of alprazolam in the Sample solution (mg/mL)

Acceptance criteria: 90.0%-110.0%

PERFORMANCE TESTS

• **DISSOLUTION** (711)

Test 1

Medium: pH 6.0 phosphate buffer (8.0 g/L of monobasic potassium phosphate and 2.0 g/L of dibasic potassium phosphate in water. Adjust with phosphoric acid or potassium hydroxide to a pH of 6.0 \pm 0.1); 500 mL

Apparatus 1: 100 rpm **Times:** 1, 4, 8, and 12 h

Mobile phase: Acetonitrile, tetrahydrofuran, and *Medium* (7:1:12) **Standard stock solution:** 0.5 mg/mL of <u>USP Alprazolam RS</u> in acetonitrile

Standard solution: (L/500) mg/mL of USP Alprazolam RS in Medium from the Standard stock solution, where L is the label claim in

Sample solution: Pass a portion of the solution under test through a suitable filter.

Chromatographic system

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 10-cm; 5-µm packing L7

(See Chromatography (621), System Suitability.)

Flow rate: 1 mL/min Injection volume: 100 µL

System suitability

Sample: Standard solution **Suitability requirements** Tailing factor: NMT 2.0

Column efficiency: NLT 3000 theoretical plates Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of alprazolam (C₁₇H₁₃CIN₄) dissolved:

Result =
$$(r_U/r_S) \times (C_S/L) \times V \times 100$$

= peak response from the Sample solution

= peak response from the Standard solution

= concentration of <u>USP Alprazolam RS</u> in the Standard solution (mg/mL)

= label claim (mg/Tablet)

= volume of Medium, 500 mL

Tolerances: See <u>Table 1</u>.

Table 1

Time	Amount Dissolved			
(h)	0.5-mg Tablet (%)	2-mg Tablet (%)	3-mg Tablet (%)	
1	NMT 25	NMT 20	NMT 20	
4	40-60	30-55	30-55	
8	70-90	65-90	65-90	
12	NLT 85	NLT 85	NLT 85	

The percentages of the labeled amount of alprazolam ($C_{17}H_{13}CIN_d$) released at the times specified conform to <u>Dissolution (711)</u>.

Acceptance Table 2.

Test 2: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 2.

Medium: pH 6.0 phosphate buffer (8.0 g/L of monobasic potassium phosphate and 2.0 g/L of dibasic potassium phosphate in water.

Adjust with phosphoric acid or potassium hydroxide to a pH of 6.0 ± 0.1); 500 mL

Apparatus 1: 100 rpm Times: 1, 4, 8, and 16 h

Mobile phase: Acetonitrile, tetrahydrofuran, and Medium (35:5:60) Standard stock solution: 0.05 mg/mL of USP Alprazolam RS in methanol

Standard solution: (L/500) mg/mL of USP Alprazolam RS in Medium from the Standard stock solution, where L is the label claim in

Sample solution: Pass a portion of the solution under test through a suitable filter.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 7.5-cm; 5-µm packing L7

Flow rate: 1.3 mL/min Injection volume: 80 μL System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 1.5

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of alprazolam $(C_{17}H_{12}CIN_a)$ in the sample withdrawn from the vessel at each time point (i):

Result_i =
$$(r_{ij}/r_{s}) \times C_{s}$$

 r_{ij} = peak response of alprazolam from the Sample solution at each time point

r_s = peak response of alprazolam from the Standard solution

 C_s = concentration of <u>USP Alprazolam RS</u> in the Standard solution (mg/mL)

Calculate the percentage of the labeled amount of alprazolam ($C_{17}H_{13}CIN_d$) dissolved at each time point (i):

$$\begin{aligned} \text{Result}_1 &= C_1 \times V \times (1/L) \times 100 \\ \text{Result}_2 &= \{ [C_2 \times (V - V_S)] + (C_1 \times V_S) \} \times (1/L) \times 100 \\ \text{Result}_3 &= (\{C_3 \times [V - (2 \times V_S)]\} + [(C_2 + C_1) \times V_S]) \times (1/L) \times 100 \\ \text{Result}_4 &= (\{C_4 \times [V - (3 \times V_S)]\} + [(C_3 + C_2 + C_1) \times V_S]) \times (1/L) \times 100 \end{aligned}$$

C_i = concentration of alprazolam in the Sample solution at the specified time point (mg/mL)

V = volume of Medium, 500 mL

L = label claim (mg/Tablet)

V_c = volume of the Sample solution withdrawn at each time point (mL)

Tolerances: See Table 2.

Table 2

		Amount Dissolved			
Time Point (i)	Time (h)	0.5-mg Tablet (%)	1-mg Tablet (%)	2-mg Tablet (%)	3-mg Tablet (%)
1	1	NMT 25	NMT 25	NMT 20	NMT 20
2	4	45-60	40-55	30-50	25-45
3	8	70-90	65-85	55-75	50-70
4	16	NLT 85	NLT 85	NLT 85	NLT 80

The percentages of the labeled amount of alprazolam (C₁₇H₁₃CIN₄) released at the times specified conform to <u>Dissolution (711)</u>.

Acceptance Table 2.

Test 3: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 3.

Medium: pH 6.0 phosphate buffer (8.0 g/L of monobasic potassium phosphate and 2.0 g/L of dibasic potassium phosphate in water. Adjust with phosphoric acid or potassium hydroxide to a pH of 6.0 \pm 0.1); 500 mL, deaerated

Apparatus 1: 100 rpm

Times: 1, 4, and 8 h for Tablets labeled to contain 0.5 mg or 1 mg; 1, 4, 8, and 16 h for Tablets labeled to contain 2 mg or 3 mg

Mobile phase: Acetonitrile and Medium (40:60)

Standard stock solution: 0.5 mg/mL of USP Alprazolam RS in methanol

Standard solution: (L/500) mg/mL of <u>USP Alprazolam RS</u> in *Medium* from the *Standard stock solution*, where L is the label claim in mg/Tablet

Sample solution: Pass a portion of the solution under test through a suitable filter of 1-µm pore size.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 10-cm; 3-µm or 5-µm packing L7

Flow rate: 1 mL/min Injection volume: 100 μ L

System suitability

Sample: Standard solution **Suitability requirements**

Relative standard deviation: NMT 5.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_{i}) of alprazolam ($C_{17}H_{13}CIN_4$) in the sample withdrawn from the vessel at each time point (i):

Result_i =
$$(r_{ij}/r_{s}) \times C_{s}$$

 r_{ij} = peak response of alprazolam from the Sample solution at each time point

r_s = peak response of alprazolam from the Standard solution

 C_S = concentration of <u>USP Alprazolam RS</u> in the Standard solution (mg/mL)

Calculate the percentage of the labeled amount of alprazolam (C₁₇H₁₃CIN_d) dissolved at each time point (i):

$$\begin{aligned} \text{Result}_1 &= C_{\gamma} \times V \times (1/L) \times 100 \\ \text{Result}_2 &= \{ [C_2 \times (V - V_S)] + (C_{\gamma} \times V_S) \} \times (1/L) \times 100 \\ \text{Result}_3 &= (\{C_3 \times [V - (2 \times V_S)]\} + [(C_2 + C_{\gamma}) \times V_S]) \times (1/L) \times 100 \\ \text{Result}_4 &= (\{C_4 \times [V - (3 \times V_S)]\} + [(C_3 + C_2 + C_{\gamma}) \times V_S]) \times (1/L) \times 100 \end{aligned}$$

C_i = concentration of alprazolam in the Sample solution at the specified time point (mg/mL)

V = volume of Medium, 500 mL

L = label claim (mg/Tablet)

V_s = volume of the Sample solution withdrawn at each time point (mL)

Tolerances: See <u>Table 3</u>.

Table 3

		Amount Dissolved			
Time Point (i)	Time (h)	0.5-mg Tablet (%)	1-mg Tablet (%)	2-mg Tablet (%)	3-mg Tablet (%)
1	1	15-35	10-30	10-30	5-25
2	4	50-75	45-65	30-55	25-50
3	8	NLT 75	NLT 70	60-80	50-75
4	16	_	_	NLT 85	NLT 80

The percentages of the labeled amount of alprazolam (C₁₇H₁₃CIN₄) released at the times specified conform to <u>Dissolution (711)</u>,

Acceptance Table 2.

Test 4: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 4.

Medium: pH 6.0 phosphate buffer (8.0 g/L of monobasic potassium phosphate and 2.0 g/L of dibasic potassium phosphate in water. Adjust with phosphoric acid or potassium hydroxide to a pH of 6.0); 500 mL

Apparatus 1 (20-mesh basket): 100 rpm

Times: 1, 4, 8, and 16 h

Mobile phase: Acetonitrile and Medium (32:68)

Standard stock solution: 0.4 mg/mL of <u>USP Alprazolam RS</u> in methanol

Standard solution: (L/500) mg/mL of <u>USP Alprazolam RS</u> in *Medium* from the *Standard stock solution*, where L is the label claim in mg/Tablet. Pass through a suitable filter of 0.45-µm pore size, and use the filtrate.

Sample solution: At the end of specified time intervals, withdraw a known volume (V_s) of the solution from the dissolution vessel, and replace an equal volume of fresh *Medium* into the dissolution vessel. Pass the withdrawn sample through a suitable filter of 0.45- μ m pore size, and use the filtrate.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 15-cm; 5-µm packing L1

Flow rate: 1.5 mL/min Injection volume: 100 μL

System suitability

Sample: Standard solution
Suitability requirements
Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of alprazolam $(C_{17}H_{12}CIN_a)$ in the sample withdrawn from the vessel at each time point (i):

$$Result_i = (r_U/r_S) \times C_S$$

 r_{ij} = peak response of alprazolam from the Sample solution at each time point

 $r_{\rm s}$ = peak response of alprazolam from the Standard solution

C_s = concentration of <u>USP Alprazolam RS</u> in the Standard solution (mg/mL)

Calculate the percentage of the labeled amount of alprazolam $(C_{17}H_{13}CIN_4)$ dissolved at each time point (i):

$$\begin{aligned} & \text{Result}_1 = C_1 \times V \times (1/L) \times 100 \\ & \text{Result}_2 = [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100 \\ & \text{Result}_3 = \{[C_3 \times V] + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100 \\ & \text{Result}_4 = \{[C_4 \times V] + [(C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100 \end{aligned}$$

C_i = concentration of alprazolam in the Sample solution at the specified time point (mg/mL)

V = volume of Medium, 500 mL

L = label claim (mg/Tablet)

 $V_{\rm g}$ = volume of the Sample solution withdrawn at each time point and replaced with Medium (mL)

Tolerances: See <u>Table 4</u>.

Table 4

Time Point Time		Amount Dissolved			
(i)	(h)	0.5-mg Tablet (%)	1-mg Tablet (%)	2-mg Tablet (%)	3-mg Tablet (%)
1	1	NMT 40	NMT 35	NMT 35	NMT 35
2	4	50-75	45-65	35-55	30-55
3	8	NLT 75	70-90	55-75	50-70
4	16	NLT 85	NLT 85	NLT 85	NLT 75

The percentages of the labeled amount of alprazolam (C₁₇H₁₃CIN₄) released at the times specified conform to <u>Dissolution (711)</u>.

Test 5: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 5.

Medium: pH 6.0 phosphate buffer (8.0 g/L of monobasic potassium phosphate and 2.0 g/L of dibasic potassium phosphate in water.

Adjust with phosphoric acid to a pH of 6.0); 500 mL

Apparatus 1: 100 rpm **Times:** 1, 4, 8, and 16 h

Mobile phase: Acetonitrile, water, and phosphoric acid (350:650:1) **Standard stock solution:** 0.5 mg/mL of <u>USP Alprazolam RS</u> in methanol

Standard solution: (L/500) mg/mL of USP Alprazolam RS in Medium from the Standard stock solution, where L is the label claim in

mg/Tablet

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size, and use the filtrate.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 15-cm; 5-µm packing L7

Column temperature: 30° Flow rate: 1 mL/min Injection volume: $50 \text{ } \mu\text{L}$ System suitability

Sample: Standard solution Suitability requirements Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of alprazolam ($C_{17}H_{13}CIN_d$) in the sample withdrawn from the vessel at each time point (i):

Result_i =
$$(r_{ij}/r_{s}) \times C_{s}$$

 r_{ij} = peak response of alprazolam from the Sample solution at each time point

 $r_{\rm s}$ = peak response of alprazolam from the Standard solution

C_s = concentration of <u>USP Alprazolam RS</u> in the Standard solution (mg/mL)

Calculate the percentage of the labeled amount of alprazolam (C, H, CIN, dissolved at each time point (i):

$$\begin{aligned} \text{Result}_1 &= C_1 \times V \times (1/L) \times 100 \\ \text{Result}_2 &= \{ [C_2 \times (V - V_S)] + (C_1 \times V_S) \} \times (1/L) \times 100 \\ \text{Result}_3 &= (\{C_3 \times [V - (2 \times V_S)]\} + [(C_2 + C_1) \times V_S]) \times (1/L) \times 100 \\ \text{Result}_4 &= (\{C_4 \times [V - (3 \times V_S)]\} + [(C_3 + C_2 + C_1) \times V_S]) \times (1/L) \times 100 \end{aligned}$$

C_i = concentration of alprazolam in the Sample solution at the specified time point (mg/mL)

V = volume of Medium, 500 mL

L = label claim (mg/Tablet)

V_o = volume of the Sample solution withdrawn at each time point (mL)

Tolerances: See <u>Table 5</u>.

Table 5

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	NMT 25
2	4	40-65
3	8	65-95

Time Point (i)	Time (h)	Amount Dissolved (%)
4	16	NLT 85

The percentages of the labeled amount of alprazolam (C₁₇H₁₃CIN₄) released at the times specified conform to <u>Dissolution (711)</u>.

Acceptance Table 2.

• **UNIFORMITY OF DOSAGE UNITS (905)**: Meet the requirements

IMPURITIES

• ORGANIC IMPURITIES

Buffer: 5.4 g/L of monobasic potassium phosphate (KH₂PO₄) in water. Adjust with phosphoric acid to a pH of 3.4.

Solution A: Acetonitrile, methanol, and Buffer (27:10:63) Solution B: Acetonitrile, methanol, and Buffer (7:3:10)

Mobile phase: See <u>Table 6</u>.

Table 6

Time (min)	Solution A (%)	Solution B (%)
0	95	5
22	95	5
25	15	85
60	15	85
60.1	95	5
70	95	5

System suitability solution: 1 µg/mL each of USP Chlordiazepoxide Related Compound A RS, USP Alprazolam Related Compound A RS, and USP Nordazepam RS; and 0.4 µg/mL of USP Alprazolam RS in methanol

Standard solution: 0.4 µg/mL of <u>USP Alprazolam RS</u> in methanol

Sample solution: From NLT 20 Tablets ground to a fine powder, transfer an amount of powder to a suitable flask to obtain a nominal concentration of 0.2 mg/mL of alprazolam in methanol. [Note-Sonicate for 15 min to dissolve the contents.] Filter a portion, and discard the first 1 mL of filtrate.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm × 25-cm; 5-µm packing L7

Flow rate: 1.5 mL/min Injection volume: 10 µL

System suitability

Samples: System suitability solution and Standard solution [Note—The relative retention times are listed in <u>Table 7</u>.]

Suitability requirements

Resolution: NLT 1.5 between nordazepam and alprazolam; NLT 1.5 between chlordiazepoxide related compound A and alprazolam related compound A, System suitability solution

Tailing factor: NMT 2.0 for the alprazolam peak, System suitability solution

Relative standard deviation: NMT 5%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each impurity in the portion of Tablets taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

= peak response of the impurity from the Sample solution

= peak response from the Standard solution

 C_s = concentration of <u>USP Alprazolam RS</u> in the *Standard solution* (mg/mL)

 C_{ij} = nominal concentration of alprazolam in the Sample solution (mg/mL)

F = relative response factor (see <u>Table 7</u>)

Acceptance criteria: See Table 7.

Table 7

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Chlordiazepoxide			
related compound A ^a	0.36	1.0	0.2
Alprazolam related compound			
А	0.45	0.7	0.5
Nordazepam ^{a,b}	0.8	1.0	0.2
Alprazolam	1.0	_	1
2-Amino-5-chloro-			
benzophenone	1.8	0.9	0.5
Amino-derivative [©]	2.2	1.2	0.5
Any other individual degradation	_		
product		1.0	0.2
Total impurities	-	-	2.0

^a If possible from the manufacturing process.

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in tight, light-resistant containers, and store at room temperature.

• LABELING: The labeling states the Dissolution test used only if Test 1 is not used.

• USP REFERENCE STANDARDS (11)

USP Alprazolam RS

USP Alprazolam Related Compound A RS

 $\hbox{$2$-(2-Acetylhydrazino)-7-chloro-5-phenyl-3$$$H$-1,4-benzodiazepine.}$

 $C_{17}H_{15}CIN_4O$

326.78

USP Chlordiazepoxide Related Compound A RS

7-Chloro-1,3-dihydro-5-phenyl-2*H*-1,4-benzodiazepin-2-one 4-oxide.

 $C_{15}H_{11}CIN_2O_2$ 286.71

USP Nordazepam RS

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
ALPRAZOLAM EXTENDED-RELEASE TABLETS	Documentary Standards Support	SM42020 Small Molecules 4

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 41(4)

Current DocID: GUID-30C4B537-E2F1-457D-8C6C-EA85A6AADDC0_2_en-US

^b 7-Chloro-5-phenyl-1,3-dihydro-2*H*-1,4-benzodiazepin-2-one.

^c 7-Chloro-1-methyl-5-phenyl[1,2,4]triazolo[4,3-a]quinolin-4-amine.

Previous DocID: GUID-30C4B537-E2F1-457D-8C6C-EA85A6AADDC0_1_en-US

DOI: https://doi.org/10.31003/USPNF_M743_02_01

DOI ref: qz6sh

