Status: Currently Official on 17-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
Docld: GUID-56E20296-05C3-48CB-8FA6-04ADA9B50953_3_en-US
DOI: https://doi.org/10.31003/USPNF_M1430_03_01
DOI Ref: oi311

© 2025 USPC Do not distribute

Allopurinol

 $C_5 H_4 N_4 O$ 136.11

4*H*-Pyrazolo[3,4-*d*]pyrimidin-4-one, 1,5-dihydro-; 1,5-Dihydro-4*H*-pyrazolo[3,4-*d*]pyrimidin-4-one;

1H-Pyrazolo[3,4-d]pyrimidin-4-ol CAS RN®: 315-30-0; UNII: 63CZ7GJN5I.

DEFINITION

Allopurinol contains NLT 98.0% and NMT 102.0% of allopurinol (C_eH_AN_AO), calculated on the dried basis.

IDENTIFICATION

Change to read:

• ▲ Spectroscopic Identification Tests (197), Infrared Spectroscopy: 197K (CN 1-May-2020)

ASSAY

• PROCEDURE

[Note-Store and inject the System suitability solution, Standard solution, and Sample solution at 8°, using a cooled autosampler.]

Mobile phase: 1.25-g/L solution of monobasic potassium phosphate in water, filtered and degassed

System suitability solution: 0.5 μg/mL each of <u>USP Allopurinol RS</u>, <u>USP Allopurinol Related Compound B RS</u>, and <u>USP Allopurinol Related Compound C RS</u> to three separate suitable volumetric flasks, dissolve in a small volume of 0.1 N sodium hydroxide, and immediately dilute with *Mobile phase* to volume to obtain solutions containing 0.05 mg/mL each. Transfer 1.0 mL of each of these three solutions to a 100-mL volumetric flask and dilute with *Mobile phase* to volume.

Standard stock solution: 0.5 mg/mL of <u>USP Allopurinol RS</u>, prepared as follows. Transfer a weighed quantity of <u>USP Allopurinol RS</u> to a suitable volumetric flask, dissolve in a small volume of 0.1 N sodium hydroxide, and immediately dilute with *Mobile phase* to volume.

Standard solution: 0.08 mg/mL of USP Allopurinol RS in Mobile phase from the Standard stock solution

Sample stock solution: 0.5 mg/mL of Allopurinol, prepared as follows. Transfer 50 mg of Allopurinol to a 100-mL volumetric flask, dissolve in 5.0 mL of 0.1 N sodium hydroxide, and immediately dilute with *Mobile phase* to volume.

Sample solution: 0.08 mg/mL of Allopurinol in Mobile phase from the Sample stock solution

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm × 25-cm; packing L1

Flow rate: 1.8 mL/min **Injection volume:** 20 μL

System suitability

Samples: System suitability solution and Standard solution

[Note—The relative retention times for allopurinol related compound B, allopurinol related compound C, and allopurinol are about 0.7, 0.8, and 1.0, respectively.]

Suitability requirements

Resolution: NLT 1.1 between allopurinol related compound B and allopurinol related compound C; NLT 6.0 between allopurinol related compound C and allopurinol, *System suitability solution*

Relative standard deviation: NMT 2.0% for replicate injections, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of allopurinol ($C_5H_4N_4O$) in the portion of Allopurinol taken:

;, = peak response from the Sample solution

= peak response from the Standard solution

C_s = concentration of <u>USP Allopurinol RS</u> in the *Standard solution* (mg/mL)

 C_{ii} = concentration of Allopurinol in the Sample solution (mg/mL)

Acceptance criteria: 98.0%-102.0% on the dried basis

IMPURITIES

• ORGANIC IMPURITIES

[Note—Store and inject the *Standard solution* and the *Sample solution* at 8°, using a cooled autosampler.] **Solution A:** 1.25-g/L solution of monobasic potassium phosphate in water, filtered and degassed

Solution B: Methanol **Mobile phase:** See <u>Table 1</u>.

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	90	10
30	70	30
35	70	30
36	90	10
46	90	10

Diluent: Solution A and Solution B (90:10)

Standard stock solution: 0.05 mg/mL each of <u>USP Allopurinol RS</u>, <u>USP Allopurinol Related Compound A RS</u>, <u>USP Allopurinol Related Compound D RS</u>, and <u>USP Allopurinol Related Compound D RS</u>, and <u>USP Allopurinol Related Compound D RS</u>, and <u>USP Allopurinol Related Compound A RS</u>, <u>USP Allopurinol Related Compound A RS</u>, <u>USP Allopurinol Related Compound D RS</u>, and <u>USP Allopur</u>

Standard solution: 0.5 µg/mL each of <u>USP Allopurinol RS</u>, <u>USP Allopurinol Related Compound A RS</u>, <u>USP Allopurinol Related Compound B RS</u>, <u>USP Allopurinol Related Compound C RS</u>, <u>USP Allopurinol Related Compound D RS</u>, and <u>USP Allopurinol Related Compound E RS</u> in *Diluent* from the *Standard stock solution*

Sample solution: 0.25 mg/mL of Allopurinol, prepared as follows. Transfer 25 mg of Allopurinol to a 100-mL volumetric flask. Add 5.0 mL of 0.1 N sodium hydroxide to dissolve, promptly sonicate with swirling for NMT 1 min, add 80 mL of *Diluent*, and sonicate for an additional 5 min. Dilute with *Diluent* to volume.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Column temperature: 30° Flow rate: 1.0 mL/min Injection volume: 40 μL System suitability

Sample: Standard solution

[Note—See <u>Table 2</u> for relative retention times.]

Suitability requirements

Resolution: NLT 0.8 between allopurinol related compound C and allopurinol related compound B

Tailing factor: NMT 1.5 for the allopurinol peak

Analysis

Samples: Standard solution and Sample solution

Calculate the percentages of allopurinol related compounds A, B, C, D, and E in the portion of Allopurinol taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times 100$$

r_{,,} = peak response of each individual impurity from the Sample solution

r_s = peak response of each individual impurity from the *Standard solution*

C_s = concentration of each individual impurity in the Standard solution (mg/mL)

 C_{ij} = concentration of Allopurinol in the Sample solution (mg/mL)

Calculate the percentage of any other individual impurity in the portion of Allopurinol taken:

Result =
$$(r_{IJ}/r_{S}) \times (C_{S}/C_{IJ}) \times 100$$

 r_{ij} = peak response of each impurity from the Sample solution

 r_s = peak response of allopurinol from the Standard solution

C_s = concentration of <u>USP Allopurinol RS</u> in the Standard solution (mg/mL)

 C_{ij} = concentration of Allopurinol in the Sample solution (mg/mL)

Acceptance criteria: See Table 2.

Table 2

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Allopurinol related compound A	0.62	0.2
Allopurinol related compound C	0.79	0.2
Allopurinol related compound B	0.81	0.2
Allopurinol	1.0	-
Allopurinol related compound D	4.4	0.2
Allopurinol related compound E	4.8	0.2
Ethyl-(<i>E/Z</i>)-3-(2-carbethoxy-2-cyanoethenyl)amino-1 <i>H</i> -pyrazole-4-carboxylate	6.5	0.2
Unspecified impurity	_	0.1
Total impurities	_	1.0

• LIMIT OF HYDRAZINE

[Note-Under the following conditions, any hydrazine present in the sample will react with benzaldehyde to form benzalazine.]

Mobile phase: Hexane and isopropyl alcohol (95:5)

2 N sodium hydroxide solution: Dissolve 8.5 g of sodium hydroxide in water, and dilute with the same solvent to 100 mL. Alternatively, a commercially available 2 N sodium hydroxide solution can be used.

Diluent: Methanol and 2 N sodium hydroxide solution (1:1)

Benzaldehyde solution: 40 mg/mL of benzaldehyde in *Diluent*. [Note—Prepare immediately before use.]

Hydrazine solution: 2.0 μg/mL of hydrazine sulfate in *Diluent*. Use sonication if necessary.

Standard solution: Transfer 5.0 mL of *Hydrazine solution* to a suitable flask and add 4 mL of *Benzaldehyde solution*. Mix and allow to stand for 2.5 h at room temperature. Add 5.0 mL of hexane, and shake for 1 min. Allow the layers to separate, and use the upper (hexane) layer.

Allopurinol solution: Dissolve 250 mg of Allopurinol in 5 mL of Diluent.

Sample solution: Transfer the *Allopurinol solution* to a suitable flask, and add 4 mL of *Benzaldehyde solution*. Mix, and allow to stand for 2.5 h at room temperature. Add 5.0 mL of hexane, and shake for 1 min. Allow the layers to separate, and use the upper (hexane) layer.

Blank solution: Mix 5.0 mL of *Diluent* and 4 mL of *Benzaldehyde solution*, and allow to stand for 2.5 h at room temperature. Add 5.0 mL of hexane, and shake for 1 min. Allow the layers to separate, and use the upper (hexane) layer.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 310 nm

Column: 4.0-mm × 25-cm; 5-µm packing L10

Column temperature: 30° Flow rate: 1.5 mL/min Injection volume: $20 \text{ }\mu\text{L}$

System suitability

Sample: Standard solution

[Note—The relative retention times for benzalazine and benzaldehyde are about 0.8 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 2.0 between benzalazine and benzaldehyde **Relative standard deviation:** NMT 15.0% for the benzalazine peak

Analysis

Samples: Standard solution and Sample solution

Calculate the amount, in ppm, of hydrazine in the portion of Allopurinol taken:

Result =
$$(r_{ij}/r_{s}) \times (C_{s}/C_{ij}) \times (M_{ri}/M_{ro}) \times F$$

 $r_{_U}$ = peak response of benzalazine from the Sample solution

 $r_{\rm s}$ = peak response of benzalazine from the Standard solution

 $C_{_{\rm S}}$ = concentration of hydrazine sulfate in the *Hydrazine solution* (µg/mL)

C, = concentration of Allopurinol in the Allopurinol solution (mg/mL)

 M_{r_1} = molecular weight of hydrazine, 32.05

 $M_{\rm c2}$ = molecular weight of hydrazine sulfate, 130.12

F = unit conversion factor (from μ g/mg to ppm), 1000

Acceptance criteria: NMT 10 ppm of hydrazine

SPECIFIC TESTS

• Loss on Drying (731)

Analysis: Dry under vacuum at 105° for 5 h.

Acceptance criteria: NMT 0.5%

ADDITIONAL REQUIREMENTS

• Packaging and Storage: Preserve in well-closed containers. Store at room temperature.

Change to read:

• USP Reference Standards (11)

USP Allopurinol RS

USP Allopurinol Related Compound A RS

3-Amino-4-carboxamidopyrazole hemisulfate.

 $^{\blacktriangle}(C_4H_6N_4O)_2 \cdot H_2SO_4$ 350.31 $_{\blacktriangle}$ (ERR 1-Dec-2018)

USP Allopurinol Related Compound B RS

 $\hbox{5-(Formylamino)-1} \textit{H-} pyrazole-\hbox{4-carboxamide}.$

 $C_5H_6N_4O_2$ 154.13

USP Allopurinol Related Compound C RS

5-(4H-1,2,4-Triazol-4-yl)-1H-pyrazole-4-carboxamide.

C₆H₆N₆O 178.15 <u>USP Allopurinol Related Compound D RS</u>

Ethyl 5-amino-1*H*-pyrazole-4-carboxylate.

 $C_6 H_9 N_3 O_2$ 155.15

USP Allopurinol Related Compound E RS

Ethyl 5-(formylamino)-1*H*-pyrazole-4-carboxylate.

 $C_7 H_9 N_3 O_3$ 183.16

https://tifumgtamthuoc.com/

USP-NF Allopurinol

Topic/Question	Contact	Expert Committee
ALLOPURINOL	Documentary Standards Support	SM32020 Small Molecules 3
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM32020 Small Molecules 3

Chromatographic Database Information: <u>Chromatographic Database</u>

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 34(1)

Current DocID: GUID-56E20296-05C3-48CB-8FA6-04ADA9B50953_3_en-US

DOI: https://doi.org/10.31003/USPNF_M1430_03_01

DOI ref: <u>oi311</u>