h2/17/25,8:00-PM/trungtamthuoc.com USP-NF Adapalene

Status: Currently Official on 17-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-7AD2F90B-12C6-45D0-BACD-CDEBB4D16848_4_en-US
DOI: https://doi.org/10.31003/USPNF_M910_04_01
DOI Ref: h0i1v

© 2025 USPC Do not distribute

Adapalene

2-Naphthalenecarboxylic acid, 6-(4-methoxy-3-tricyclo [3.3.1.1^{3,7}]dec-1-ylphenyl)-;

6-[3-(1-Adamantyl)-4-methoxyphenyl]-2-naphthoic acid. CAS RN®: 106685-40-9; UNII: 1L4806J2QF.

DEFINITION

Adapalene contains NLT 98.0% and NMT 102.0% of adapalene ($C_{28}H_{28}O_3$), calculated on the dried basis.

IDENTIFICATION

Change to read:

- A. Spectroscopic Identification Tests (197), Infrared Spectroscopy: 197K (CN 1-May-2020)
- B. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

• PROCEDURE

Mobile phase: Acetonitrile, tetrahydrofuran, trifluoroacetic acid, and water (21:16:0.01:13)

Standard stock solution: 0.2 mg/mL of <u>USP Adapalene RS</u> in *Mobile phase*. Dissolve <u>USP Adapalene RS</u> in a minimal amount of tetrahydrofuran (about 1%–5% of the final volume), using sonication as needed, and dilute with *Mobile phase* to volume.

Standard solution: 40 µg/mL of USP Adapalene RS in Mobile phase from the Standard stock solution

Sample stock solution: 0.2 mg/mL of Adapalene in *Mobile phase*. Dissolve Adapalene in a minimal amount of tetrahydrofuran (about 1%–5% of the final volume), using sonication as needed, and dilute with *Mobile phase* to volume.

Sample solution: 40 µg/mL of Adapalene in Mobile phase from the Sample stock solution

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 235 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Flow rate: 1 mL/min Injection volume: 20 μL

System suitability

Sample: Standard solution **Suitability requirements**

Relative standard deviation: NMT 1.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of adapalene ($C_{28}H_{28}O_3$) in the portion of Adapalene taken:

Result = $(r_U/r_S) \times (C_S/C_U) \times 100$

 r_U = peak response from the Sample solution

 r_s = peak response from the Standard solution

h2/17/25,8:00-PM/trungtamthuoc.com USP-NF Adapalent

 C_S = concentration of <u>USP Adapalene RS</u> in the Standard solution (μ g/mL)

 C_{μ} = concentration of Adapalene in the Sample solution (µg/mL)

Acceptance criteria: 98.0%-102.0% on the dried basis

IMPURITIES

• Residue on Ignition (281): NMT 0.20%

[Note—On the basis of the synthetic route, perform either Organic Impurities, Procedure 1 or Organic Impurities, Procedure 2.]

• ORGANIC IMPURITIES, PROCEDURE 1

Procedure 1 is recommended if adapalene related compounds A and B may be present.

Mobile phase: Proceed as directed in the Assay.

Standard stock solution: 0.2 mg/mL of <u>USP Adapalene RS</u>, 0.3 mg/mL of <u>USP Adapalene Related Compound A RS</u>, and 0.2 mg/mL of <u>USP Adapalene Related Compound A RS</u>, and 0.2 mg/mL of <u>USP Adapalene Related Compound A RS</u>, and <u>USP Adapalene Related Compound A RS</u>, and <u>USP Adapalene Related Compound B RS</u> in a minimal amount of tetrahydrofuran (about 1%–5% of the final volume), using sonication as needed, and dilute with *Mobile phase* to volume.

Standard solution: 0.2 μg/mL of <u>USP Adapalene RS</u>, 0.3 μg/mL of <u>USP Adapalene Related Compound A RS</u>, and 0.2 μg/mL of <u>USP Adapalene Related Compound B RS</u> in *Mobile phase* from the *Standard stock solution*

Sample solution: 0.2 mg/mL of Adapalene in *Mobile phase*. Dissolve Adapalene in a minimal amount of tetrahydrofuran (about 1%–5% of the final volume), using sonication as needed, and dilute with *Mobile phase* to volume.

Chromatographic system: Proceed as directed in the Assay, except use a run time of NLT two times the retention time of adapalene peak for *Standard solution* and NLT six times the retention time of adapalene peak for *Sample solution*.

System suitability

Sample: Standard solution **Suitability requirements**

Relative standard deviation: NMT 3.0% for the adapalene peak **Column efficiency:** NLT 3000 theoretical plates for the adapalene peak

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of adapalene related compounds A and B in the portion of Adapalene taken:

Result =
$$(r_u/r_s) \times (C_s/C_u) \times 100$$

r., = peak area of each impurity from the Sample solution

r_s = peak area of corresponding adapalene related compound A or adapalene related compound B from the Standard solution

C_S = concentration of corresponding <u>USP Adapalene Related Compound A RS</u> or <u>USP Adapalene Related Compound B RS</u> in the Standard solution (mg/mL)

C₁₁ = concentration of Adapalene in the Sample solution (mg/mL)

Calculate the percentage of each unspecified impurity in the portion of Adapalene taken:

Result =
$$(r_{I}/r_{s}) \times (C_{s}/C_{I}) \times 100$$

 r_{ij} = peak area of each unspecified impurity from the Sample solution

r_s = peak area of adapalene from the *Standard solution*

 C_S = concentration of <u>USP Adapalene RS</u> in the Standard solution (mg/mL)

 C_{II} = concentration of Adapalene in the Sample solution (mg/mL)

Acceptance criteria: See <u>Table 1</u>. Disregard any impurity peaks less than 0.05%.

Table 1

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Adapalene related compound		
Aª	0.52	0.10
Adapalene	1.0	-

2/17/25, 8:00 PM/trun of a mthuoc com USP-NF Adapalen

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Adapalene related compound B ^b	1.57	0.10
Any individual unspecified impurity	-	0.10
Total impurities	_	0.50

a Methyl 6-bromo-2-naphthoate.

Procedure 2 is recommended if adapalene related compounds E, C, and D may be present.

Solution A: Glacial acetic acid and water (0.1:100) **Solution B:** Acetonitrile and tetrahydrofuran (65:35)

Mobile phase: See <u>Table 2</u>.

Table 2

Time (min)	Solution A (%)	Solution B (%)
0	50	50
2.5	50	50
40	28	72
42	28	72
42.1	50	50
50	50	50

Diluent: Acetonitrile, tetrahydrofuran, and water (37:20:43)

Standard stock solution: 0.2 mg/mL of USP Adapalene RS in tetrahydrofuran

Standard solution: 2.0 µg/mL of USP Adapalene RS in Diluent from the Standard stock solution

System suitability solution: 0.2 mg/mL of <u>USP Adapalene RS</u> and 1.2 µg/mL each of <u>USP Adapalene Related Compound C RS</u>, <u>USP Adapalene Related Compound D RS</u>, and <u>USP Adapalene Related Compound E RS</u> prepared by dissolving the standards in tetrahydrofuran equivalent to 50% of the final volume, and diluting with *Diluent* to volume

Sample solution: 2.0 mg/mL of Adapalene prepared by dissolving in tetrahydrofuran equivalent to 50% of the final volume, and diluting with *Diluent* to volume

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 270 nm

System suitability

Column: 4.6-mm × 25-cm; 5-µm packing L11 with 7.5% carbon loading

Column temperature: 30° Flow rate: 1.2 mL/min Injection volume: $25 \text{ } \mu\text{L}$

Sample: System suitability solution

Suitability requirements

Resolution: NLT 4.5 between the adapalene and adapalene related compound C peaks

Signal-to-noise ratio: NLT 10 for the adapalene related compound C peak

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each impurity in the portion of Adapalene taken:

Result = $(r_{ij}/r_{s}) \times (C_{s}/C_{ij}) \times (1/F) \times 100$

b Methyl 6-[3-(1-Adamantyl)-4-methoxyphenyl]-2-naphthoate.

[•] ORGANIC IMPURITIES, PROCEDURE 2

h2/11/25,8:00-PM/trungtamthuoc.com USP-NF Adapalene

 r_{ij} = peak response of each impurity from the Sample solution

 $r_{\rm s}$ = peak response of adapalene from the Standard solution

 C_s = concentration of adapalene in the Standard solution (mg/mL)

C,, = concentration of Adapalene in the Sample solution (mg/mL)

F = relative response factor for each individual impurity (see <u>Table 3</u>)

Acceptance criteria: See <u>Table 3</u>. Disregard any impurity peaks less than 0.05%.

Table 3

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Adapalene related compound			
E ^a	0.3	1.4	0.3
Hydroxyadapalene ^b	0.5	0.91	0.1
Adapalene related compound			
C _c	0.9	0.14	0.1
Adapalene	1.0	-	-
Adapalene related compound			
D₫	1.9	0.71	0.2
Any individual unspecified	_		
impurity		1.0	0.1
Total impurities	-	-	0.5

^a 2,2'-Binaphthyl-6,6'-dicarboxylic acid.

• RESIDUAL SOLVENT: LIMIT OF TRIETHYLAMINE

[Note—This test should be performed if triethylamine is used in the manufacturing process.]

Diluent: Dimethyl sulfoxide

Standard solution: 4.0 μg/mL of <u>USP Triethylamine RS</u> in *Diluent*. Transfer 4.0 mL of this solution to a 20-mL headspace vial, and add 1.0 mL of 1 N NaOH solution.

Sample solution: 50 mg/mL of Adapalene in *Diluent*. Transfer 4.0 mL of this solution to a 20-mL headspace vial, and add 1.0 mL of 1 N NaOH solution.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: GC

Detector: Flame ionization

Column: 30-m \times 0.53-mm; 3.0- μ m coating of G27

Temperatures

Injection port: 250°

Detector: 300°

Column: See <u>Table 4</u>.

Table 4

^b 6-[3-(3-Hydroxyadamant-1-yl)-4-methoxyphenyl]-2-naphthoic acid.

^c 2-(Adamant-1-yl)methoxybenzene.

d 4,4'-Dimethoxy-3,3'-di(adamant-1-yl)biphenyl.

2/17/25, 8:00 PM/trunotamthuoc com USP-NF Adapaler

,	Initial Temperature (°)	Temperature Ramp (°/min)	Final Temperature (°)	Hold Time at Final Temperature (min)
	40	0	40	5
	40	40	240	5

Headspace operating parameters

[Note—Headspace operating parameters can be modified in order to optimize the performance.]

Equilibration temperature: 95°
Equilibration time: 15 min
Transfer line temperature: 125°
Pressurization time: 3 min

Carrier gas: Nitrogen Flow rate: 4.8 mL/min Injection volume: 1 mL System suitability

Sample: Standard solution **Suitability requirements**

Relative standard deviation: NMT 15%

Analysis

Samples: Standard solution and Sample solution

Calculate the content, in ppm, of triethylamine in the portion of Adapalene taken:

Result =
$$(r_{IJ}/r_{S}) \times (C_{S}/C_{IJ}) \times 10^{6}$$

 r_{ij} = peak response of triethylamine from the Sample solution

 r_s = peak response of triethylamine from the Standard solution

C_s = concentration of triethylamine in the Standard solution (mg/mL)

C₁₁ = concentration of Adapalene in the Sample solution (mg/mL)

Acceptance criteria: NMT 80 ppm

SPECIFIC TESTS

• Loss on Drying (731)

Analysis: Dry a sample at 105° for 4 h. **Acceptance criteria:** NMT 0.6%

ADDITIONAL REQUIREMENTS

- Packaging and Storage: Preserve in tight, light-resistant containers, and store at room temperature.
- LABELING: If a test for Organic Impurities other than Procedure 1 is used, the labeling states the test with which the article complies.
- USP Reference Standards (11)

USP Adapalene RS

USP Adapalene Related Compound A RS

 $\begin{array}{c} \text{Methyl 6-bromo-2-naphthoate.} \\ \text{C}_{12}\text{H}_{9}\text{BrO}_{2} & 265.10 \end{array}$

USP Adapalene Related Compound B RS

Methyl 6-[3-(1-adamantyl)-4-methoxyphenyl]-2-naphthoate.

 $\begin{array}{c} {\rm C_{29}H_{30}O_3} & 426.55 \\ \underline{\rm USP\ Adapalene\ Related\ Compound\ C\ RS} \\ 2\text{-(Adamant-1-yI)} methoxybenzene. \end{array}$

C₁₇H₂₂O 242.36

USP Adapalene Related Compound D RS

 $\hbox{4,4'-Dimethoxy-3,3'-di(adamant-1-yl)} biphenyl.$

C₃₄H₄₂O₂ 482.70

2,2'-Binaphthyl-6,6'-dicarboxylic acid.

 $C_{22}H_{14}O_4$ 342.34

USP Triethylamine RS
Triethylamine.

C₆H₁₅N 101.19

2/17/25, 8:00 PM USP-NF Adapalene

Topic/Question	Contact	Expert Committee
ADAPALENE	Documentary Standards Support	SM32020 Small Molecules 3
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM32020 Small Molecules 3

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. Information currently unavailable

Current DocID: GUID-7AD2F90B-12C6-45D0-BACD-CDEBB4D16848_4_en-US

DOI: https://doi.org/10.31003/USPNF_M910_04_01

DOI ref: h0i1v