Status: Currently Official on 17-Feb-2025
Official Date: Official as of 01-Jan-2024
Document Type: USP Monographs
DocId: GUID-3ED89AF2-51AF-4471-BACE-94AD0510DE2A_5_en-US
DOI: https://doi.org/10.31003/USPNF_M115_05_01
DOI Ref: 0kylr

© 2025 USPC Do not distribute

Acarbose

645.60

D-Glucose, *O*-4,6-dideoxy-4-[[[1S-(1α,4α,5β,6α)]-4,5,6-trihydroxy-3-(hydroxymethyl)-2-cyclohexen-1-yl]amino]-α-D-glucopyranosyl-(1→4)-*O*-α-D-glucopyranosyl-(1→4)-;

O-4,6-Dideoxy-4-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)-2-cyclohexen-1-yl]amino}- α -D-glucopyranosyl-(1 \rightarrow 4)-O- α -D-glucopyranosyl-(1 \rightarrow 4)-D-glucose CAS RN[®]: 56180-94-0; UNII: T58MSI464G.

DEFINITION

 $C_{25}H_{43}NO_{18}$

Acarbose is produced by certain strains of *Actinoplanes utahensis*. It contains NLT 95.0% and NMT 102.0% of acarbose ($C_{25}H_{43}NO_{18}$), calculated on the anhydrous basis.

IDENTIFICATION

- A. Spectroscopic Identification Tests (197), Infrared Spectroscopy: 197K
- B. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

• PROCEDURE

Solution A: 0.6 mg/mL of monobasic potassium phosphate and 0.35 mg/mL of dibasic sodium phosphate in water

Mobile phase: Acetonitrile and Solution A (3:1)

System suitability solution: 20 mg/mL of USP Acarbose System Suitability Mixture RS in water

Standard solution: 20 mg/mL of USP Acarbose RS in water

Sample solution: 20 mg/mL of Acarbose in water

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 4-mm × 25-cm; packing L8

Column temperature: 35° Flow rate: 2 mL/min Injection volume: 10 µL

System suitability

Sample: System suitability solution

Identify the acarbose peak and the peaks due to the impurities listed in <u>Table 1</u>.

Suitability requirements

Peak-to-valley ratio: The ratio of the height of the impurity A peak to the height of the valley between the impurity A peak and the acarbose peak is NLT 1.2.

Chromatogram comparability: The chromatogram obtained is similar to the chromatogram provided with <u>USP Acarbose System Suitability Mixture RS</u> for the known impurities found.

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of acarbose $(C_{25}H_{43}NO_{18})$ in the portion of Acarbose taken:

Result =
$$(r_{II}/r_{S}) \times (C_{S}/C_{II}) \times 100$$

 r_{ij} = peak response from the Sample solution

 r_s = peak response from the Standard solution

 $C_{\rm S}$ = concentration of <u>USP Acarbose RS</u> in the *Standard solution* (mg/mL)

 C_{II} = concentration of the Sample solution (mg/mL)

Acceptance criteria: 95.0%-102.0% on the anhydrous basis

IMPURITIES

• Residue on Ignition (281)

Sample: 1.0 g

Acceptance criteria: NMT 0.2%

Change to read:

• CHROMATOGRAPHIC PURITY

Mobile phase, System suitability solution, Sample solution, and Chromatographic system: Proceed as directed in the Assay.

Diluted sample solution: Dilute 1.0 mL of the Sample solution with water to 100.0 mL.

Analysis

Samples: Sample solution and Diluted sample solution

Calculate the percentage of each impurity in the portion of Acarbose taken:

Result =
$$(r_U/r_A) \times (1/F)$$
 \triangleq (ERR 1-Jan-2024)

 r_{ij} = peak response of each impurity from the Sample solution

 r_{A} = peak response of the main acarbose peak from the *Diluted sample solution*

F = relative response factor for each impurity (see <u>Table 1</u>)

Acceptance criteria: See Table 1.

Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)	
Impurity A ^a	0.9	1	0.6	
Impurity B ^b	0.8	1.6	0.5	
Impurity C [©]	1.2	1	1.5	
Impurity D ^d	0.5	1.33	1.0	
Impurity E ^{<u>e</u>}	1.7	0.8	0.2	
Impurity F ^f	1.9	0.8	0.3	
Impurity G ^g	2.2	0.8	0.3	
Impurity H ^h	0.6	1	0.2	
Any individual unknown impurity	-	_	0.2	
Total impurities	-	_	3.0	

^a *O*-4,6-Dideoxy-4-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}- α -D-glucopyranosyl-(1→4)-*O*- α -D-glucopyranosyl-(1→4)-D-arabino-hex-2-ulopyranose.

^b (1R,4R,5S,6R)-4,5,6-Trihydroxy-2-(hydroxymethyl)cyclohex-2-enyl 4-*O*-[4,6-dideoxy-4-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}- α - ρ -glucopyranosyl]- α - ρ -glucopyranoside.

 $^{^{}c}$ α -D-Glucopyranosyl 4-O-[4,6-dideoxy-4-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}- α -D-glucopyranosyl]- α -D-glucopyranoside.

 $^{^{}d} \quad 4-O-[4,6-Dideoxy-4-\{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino\}-\alpha-D-glucopyranosyl]-D-glucopyranose.$

- e O-4,6-Dideoxy-4-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}- α -D-glucopyranosyl-(1 \rightarrow 4)-D- α -D-glucopyranosyl-(1 \rightarrow 4)-D-arabino-hex-2-ulopyranose (4-O- α -acarbosyl-D-fructopyranose).
- f O-4,6-Dideoxy-4-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}- α -D-glucopyranosyl-(1→4)-O- α -D-glucopyranosyl-(1→4)-O- α -D-glucopyranose (4-O- α -acarbosyl-D-glucopyranose).
- g α-D-Glucopyranosyl O-4,6-dideoxy-4-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}-α-D-glucopyranosyl-(1 \rightarrow 4)-O-α-D-glucopyranosyl-(1 \rightarrow 4)-O-O-D-D-glucopyranosyl-(1 \rightarrow 4)-O-O-D-Glucopyranosyl-(1 \rightarrow
- ^h *O*-4,6-Dideoxy-4-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-enyl]amino}- α -D-glucopyranosyl-(1→4)-D-glucopyranose.

SPECIFIC TESTS

• OPTICAL ROTATION, Specific Rotation (781S)

Sample solution: 10 mg/mL in water

Acceptance criteria: +168° to +183°

• **PH** (791)

Sample solution: 50 mg/mL **Acceptance criteria:** 5.5-7.5

• Water Determination, Method Ic(921): NMT 4.0%

ADDITIONAL REQUIREMENTS

- Packaging and Storage: Preserve in tight containers.
- USP Reference Standards (11)

USP Acarbose RS

USP Acarbose System Suitability Mixture RS

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
ACARBOSE	Julie Zhang Associate Science & Standards Liaison	BIO32020 Biologics Monographs 3 - Complex Biologics and Vaccines
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	BIO32020 Biologics Monographs 3 - Complex Biologics and Vaccines

Chromatographic Database Information: Chromatographic Database

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 39(5)

Current DocID: GUID-3ED89AF2-51AF-4471-BACE-94AD0510DE2A_5_en-US

DOI: https://doi.org/10.31003/USPNF_M115_05_01

DOI ref: Okylr