Status: Currently Official on 17-Feb-2025
Official Date: Official as of 01-May-2023
Document Type: USP Monographs
DocId: GUID-0DDE4730-11FB-4112-81A2-5ED29B319A72_4_en-US
DOI: https://doi.org/10.31003/USPNF_M118_04_01
DOI Ref: pz373

© 2025 USPC Do not distribute

Acarbose Tablets

DEFINITION

Acarbose Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of acarbose (C₂₅H₄₃NO₁₈).

IDENTIFICATION

• A. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay. Change to read:

• B. Spectroscopic IDENTIFICATION TESTS (197), Infrared Spectroscopy: 197K: The spectrum obtained from the ▲sample preparation ▲ (ERR 1-May-2023) shows IR maxima in the regions of 3500–3200, 2950–2890, 1653–1633, and 1070–1000 cm⁻¹.

ASSAY

• PROCEDURE

Buffer: 0.6 mg/mL of monobasic potassium phosphate and 0.35 mg/mL of dibasic sodium phosphate in water. Filter and degas.

Mobile phase: Acetonitrile and Buffer (75:25)

System suitability solution: 20 mg/mL of USP Acarbose System Suitability Mixture RS in water

Standard solution: 10 mg/mL of USP Acarbose RS

Sample solution: Nominally 10 mg/mL of acarbose in water, prepared as follows. Transfer a portion of the powder, from NLT 20 Tablets, equivalent to 100 mg of acarbose to a suitable volumetric flask and add water to 50%–70% of the flask volume. Sonicate to dissolve and dilute with water to volume. Pass through a suitable filter of 0.45-µm pore size.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 210 nm

Column: 4.0-mm × 25-cm; 5-µm packing L8

Column temperature: 35° Flow rate: 2 mL/min Injection volume: 10 µL

Run time: NLT 2.5 times the retention time of acarbose

System suitability

Samples: System suitability solution and Standard solution

Suitability requirements

Peak-to-valley ratio: The ratio of the height of the impurity A peak to the height of the valley between the impurity A peak and the

acarbose peak is NLT 1.2, System suitability solution

Tailing factor: NMT 2.0, Standard solution

Relative standard deviation: NMT 2.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of acarbose $(C_{25}H_{43}NO_{18})$ in the portion of Tablets taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times 100$$

 r_{ij} = peak response of acarbose from the Sample solution

r_s = peak response of acarbose from the *Standard solution*

C_s = concentration of <u>USP Acarbose RS</u> in the Standard solution (mg/mL)

 $C_{_{U}}^{}$ = nominal concentration of acarbose in the Sample solution (mg/mL)

Acceptance criteria: 90.0%-110.0%

PERFORMANCE TESTS

• DISSOLUTION (711)

2/17/25, 7:44 PM

Medium: Water, 900 mL, deaerated

Apparatus 2: 75 rpm **Time:** 30 min

Determine the percentage of the labeled amount of acarbose $(C_{25}H_{43}NO_{18})$ dissolved by using the following procedure.

Buffer: 0.6 mg/mL of monobasic potassium phosphate and 0.35 mg/mL of dibasic sodium phosphate in water, adjusted to a pH of 6.8. Filter

and degas.

Mobile phase: Acetonitrile and Buffer (5:95)

Standard stock solution: 10 mg/mL of USP Acarbose RS in Medium

Standard solution A (for Tablets labeled to contain 100 mg of acarbose): 0.1 mg/mL of <u>USP Acarbose RS</u> from the *Standard stock*

solution in Medium

Standard solution B (for Tablets labeled to contain 50 mg of acarbose): 0.05 mg/mL of <u>USP Acarbose RS</u> from Standard solution A in

Standard solution C (for Tablets labeled to contain 25 mg of acarbose): 0.025 mg/mL of <u>USP Acarbose RS</u> from *Standard solution A* in *Medium*

Sample solution: Pass a portion of the solution under test through a suitable filter.

Chromatographic system

(See Chromatography (621), System Suitability)

Mode: LC

Detector: UV 210 nm

Column: 4.0-mm × 12.5-cm; 5-µm packing L1

Column temperature: 40° Flow rate: 1.8 mL/min Injection volume: 100 µL

System suitability

Samples: Standard solution A, Standard solution B, or Standard solution C

Suitability requirements

Relative standard deviation: NMT 2.0% for the acarbose peak of Standard solution A, Standard solution B, or Standard solution C

Analysis

Samples: Standard solution A, Standard solution B, or Standard solution C; and Sample solution Calculate the percentage of the labeled amount of acarbose $(C_{25}H_{43}NO_{18})$ dissolved:

Result =
$$(r_{IJ}/r_{s}) \times C_{s} \times (1/L) \times V \times 100$$

 r_{ij} = peak response from the Sample solution

 r_s = peak response from Standard solution A, Standard solution B, or Standard solution C

C_s = concentration of <u>USP Acarbose RS</u> in Standard solution A, Standard solution B, or Standard solution C (mg/mL)

L = label claim (mg/Tablet)

V = volume of Medium, 900 mL

Tolerances: NLT 80% (Q) of the labeled amount of acarbose (C₂₅H₄₃NO₁₈) is dissolved.

• UNIFORMITY OF DOSAGE UNITS (905): Meet the requirements

IMPURITIES

• Organic Impurities

Buffer, Mobile phase, System suitability solution, Standard solution, Sample solution, and Chromatographic system: Proceed as directed in the *Assay*.

Standard solution 1: Prepare a 0.2-mg/mL solution of <u>USP Acarbose RS</u> in water by pipetting 1.0 mL of the *Standard solution* from the *Assay* into a 50-mL volumetric flask. Dilute with water to volume.

Sensitivity solution: Prepare a 0.02-mg/mL solution of <u>USP Acarbose RS</u> in water by pipetting 10.0 mL of *Standard solution 1* into a 100-mL volumetric flask. Dilute with water to volume.

System suitability

Samples: System suitability solution, Standard solution 1, and Sensitivity solution

Suitability requirements

Peak-to-valley ratio: The ratio of the height of the impurity A peak to the height of the valley between the impurity A peak and the acarbose peak is NLT 1.2, *System suitability solution*

Tailing factor: NMT 2.0, Standard solution 1

Relative standard deviation: NMT 2.0%, Standard solution 1

Signal-to-noise ratio: NLT 10, Sensitivity solution

Analysis

Samples: Sample solution and Standard solution 1

Calculate the percentage of each impurity in the portion of Tablets taken:

Result =
$$(r_{11}/r_{12}) \times (C_{12}/C_{11}) \times (1/F) \times 100$$

 r_{ij} = peak response of any individual impurity from the Sample solution

 $r_{\rm s}$ = peak response of acarbose from Standard solution 1

C_s = concentration of <u>USP Acarbose RS</u> in Standard solution 1 (mg/mL)

C₁₁ = nominal concentration of acarbose in the Sample solution (mg/mL)

F = relative response factor (see <u>Table 1</u>)

Acceptance criteria: See Table 1.

Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Impurity D ^a	0.5	1.3	1.2
Impurity B ^{<u>b</u>}	0.8	1.6	0.5
Impurity A [©]	0.9	1.0	1.6
Impurity C ^d	1.2	1.0	1.0
Any unspecified impurity	-	1.0	0.2
Total impurities	-	-	3.0

 $^{^{}a} \quad \text{4-O-(4,6-Dideoxy-4-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]} amino} \\ -\alpha - D - glucopyranosyl) - D - glucopyranosy$

• MICROBIAL ENUMERATION TESTS (61) and TESTS FOR SPECIFIED MICROORGANISMS (62): The total aerobic microbial count is NMT 10³ cfu/g, and the total combined yeasts and molds count is NMT 10² cfu/g. It meets the requirements of the testing of products for the absence of Escherichia coli (per gram).

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in tight, light-resistant containers at controlled room temperature.

• USP Reference Standards $\langle 11 \rangle$

USP Acarbose RS

USP Acarbose System Suitability Mixture RS

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
ACARBOSE TABLETS	Julie Zhang Associate Science & Standards Liaison	BIO32020 Biologics Monographs 3 - Complex Biologics and Vaccines
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	BIO32020 Biologics Monographs 3 - Complex Biologics and Vaccines

Chromatographic Database Information: Chromatographic Database

b (1R,4R,5S,6R)-4,5,6-Trihydroxy-2-(hydroxymethyl)cyclohex-2-en-1-yl 4-*O*-(4,6-dideoxy-4-{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]amino}- α - α -glucopyranosyl)- α - α -glucopyranoside.

^c *O*-4,6-Dideoxy-4-{[(1*S*,4*R*,5*S*,6*S*)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]amino}- α -D-glucopyranosyl-(1 \rightarrow 4)-*O*- α -D-glucopyranosyl-(1 \rightarrow 4)-D-arabino-2-hexulopyranose.

d α -D-Glucopyranosyl 4-*O*-(4,6-dideoxy-4-{[(1*S*,4*R*,5*S*,6*S*)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]amino}- α -D-glucopyranosyl)- α -D-glucopyranoside.

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 43(5)

Current DocID: GUID-0DDE4730-11FB-4112-81A2-5ED29B319A72_4_en-US

DOI: https://doi.org/10.31003/USPNF_M118_04_01

DOI ref: pz373

