Status: Currently Official on 13-Feb-2025
Official Date: Official as of 01-May-2013
Document Type: USP Monographs
DocId: GUID-827EB207-107E-47DA-A4F6-BB0078A8FE23_1_en-US
DOI: https://doi.org/10.31003/USPNF_M78_01_01
DOI Ref: i3I5f

© 2025 USPC Do not distribute

Abacavir Tablets

DEFINITION

Abacavir Tablets contain Abacavir Sulfate equivalent to NLT 90.0% and NMT 110.0% of the labeled amount of abacavir (C₁₄H₁₈N₆O).

IDENTIFICATION

• A. The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay.

ASSAY

• PROCEDURE

Diluent: 1.0 mL of phosphoric acid in 1 L of water **Solution A:** Trifluoroacetic acid and water (0.05:99.95)

Solution B: Methanol and water (85:15)

Mobile phase: See Table 1.

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	95	5
20	70	30
35	10	90
40	10	90
41	95	5
50	95	5

System suitability solution: 0.2 mg/mL of <u>USP Abacavir System Suitability Mixture RS</u> in *Diluent*

Standard solution: 0.21 mg/mL of abacavir sulfate in Diluent (equivalent to 0.18 mg/mL of abacavir), from USP Abacavir Sulfate RS

Sample stock solution: Transfer the equivalent to 1500 mg of abacavir, from a portion of Tablets, into a 250-mL volumetric flask. Add 150 mL of *Diluent*. Shake mechanically for 45 min. Dilute with *Diluent* to volume. Pass a portion through a suitable filter of 0.45-μm or finer pore size. Discard the first 3 mL of the filtrate.

Sample solution: 0.18 mg/mL of abacavir in Diluent using the filtrate obtained in the Sample stock solution

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 254 nm

Column: 3.9-mm × 15-cm; packing L1

Flow rate: 0.8 mL/min Injection volume: 10 μL System suitability

Samples: System suitability solution and Standard solution

Suitability requirements

Resolution: NLT 1.5 between abacavir and trans-abacavir, System suitability solution

Relative standard deviation: NMT 2.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of abacavir ($\mathrm{C_{14}H_{18}N_6O}$) in the portion of Tablets taken:

r,, = peak response of abacavir from the Sample solution

r_s = peak response of abacavir from the *Standard solution*

C_s = concentration of abacavir sulfate in the Standard solution (mg/mL)

 C_{ij} = nominal concentration of abacavir in the Sample solution (mg/mL)

 M_{r1} = molecular weight of abacavir multiplied by 2, 572.66

 M_{r2} = molecular weight of abacavir sulfate, 670.74

Acceptance criteria: 90.0%-110.0%

PERFORMANCE TESTS

• Dissolution (711)

Medium: 0.1 N hydrochloric acid; 900 mL

Apparatus 2: 75 rpm **Time:** 15 min

Standard solution: 0.39 mg/mL of USP Abacavir Sulfate RS in Medium

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size.

Instrumental conditions

Mode: UV

Analytical wavelength: 254 nm

Blank: Medium

Calculate the percentage of the labeled amount of abacavir (C₁₄H₁₈N₆O) dissolved:

Result =
$$(A_{L}/A_{c}) \times (C_{c}/L) \times (M_{c1}/M_{c2}) \times V \times 100$$

A,, = absorbance of the Sample solution

A = absorbance of the Standard solution

 $C_{\rm c}$ = concentration of the Standard solution (mg/mL)

L = label claim (mg/Tablet)

 M_{r1} = molecular weight of abacavir multiplied by 2, 572.66

 M_{c2} = molecular weight of abacavir sulfate, 670.74

V = volume of Medium, 900 mL

Tolerances: NLT 80% (Q) of the labeled amount of abacavir ($C_{14}H_{18}N_6O$) is dissolved.

• UNIFORMITY OF DOSAGE UNITS (905): Meet the requirements

IMPURITIES

• Organic Impurities

Diluent, Solution A, Solution B, Mobile phase, System suitability solution, Standard solution, Sample solution, and Chromatographic system: Proceed as directed in the *Assay*.

Analysis

[Note-Record the chromatograms for 2.5 times the retention time of abacavir.]

Samples: Standard solution and Sample solution

Calculate the percentage of each impurity in the portion of Tablets taken:

Result =
$$(r_{11}/r_{S}) \times (C_{S}/C_{11}) \times (1/F) \times (M_{r1}/M_{r2}) \times 100$$

 r_{ij} = peak response of each impurity from the Sample solution

 $r_{\rm s}$ = peak response of abacavir from the Standard solution

 C_S = concentration of <u>USP Abacavir Sulfate RS</u> in the Standard solution (mg/mL)

C₁₁ = nominal concentration of abacavir in the Sample solution (mg/mL)

F = relative response factor for each impurity (see <u>Table 2</u>)

 M_{r1} = molecular weight of abacavir multiplied by 2, 572.66

 M_{r2} = molecular weight of abacavir sulfate, 670.74

Acceptance criteria: See Table 2.

Table 2

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Cyclopropyldiaminopurine			
abacavir ^a	0.57	1.4	0.2
Descyclopropyl abacavir ^b	0.68	1.0	0.2
Abacavir	1.0	_	_
trans-Abacavir ^{c,d}	1.04	_	_
O-Pyrimidine derivative			
abacavir ^{d,e}	1.24	_	_
Any other individual impurity	_	1.0	0.2
Total impurities	_	<u> </u>	1.0

^a N^6 -Cyclopropyl-9*H*-purine-2,6-diamine.

ADDITIONAL REQUIREMENTS

• Packaging and Storage: Preserve in well-closed containers. Store at room temperature.

• USP Reference Standards $\langle 11 \rangle$

USP Abacavir Sulfate RS

USP Abacavir System Suitability Mixture RS

-A mixture of abacavir sulfate and trans-abacavir.

Auxiliary Information - Please check for your question in the FAQs before contacting USP.

Topic/Question	Contact	Expert Committee
ABACAVIR TABLETS	Documentary Standards Support	SM12020 Small Molecules 1

Chromatographic Database Information: <u>Chromatographic Database</u>

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. Information currently unavailable

Current DocID: GUID-827EB207-107E-47DA-A4F6-BB0078A8FE23_1_en-US

DOI: <u>https://doi.org/10.31003/USPNF_M78_01_01</u>

DOI ref: <u>i3l5f</u>

b [(1S,4R)-4-(2,6-Diamino-9*H*-purin-9-yl)-cyclopent-2-enyl]methanol.

 $[\]begin{tabular}{ll} $\tt c$ & $\{(1R,4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-cyclopent-2-enyl}$ methanol. \\ \end{tabular}$

^d Process impurity monitored in the drug substance and not included in the total impurities.

 $^{^{\}rm e} {\it N}^{\rm 6}\text{-Cyclopropyl-9-}\{(1R,4S)\text{-}4\text{-}[(2,5\text{-}diamino\text{-}6\text{-}chloropyrimidin-}4\text{-}yloxy)\text{methyl}]\text{cyclopent-2-enyl}\}\text{-}9H\text{-}purine-2,6\text{-}diamine.}$